diff --git a/train.py b/train.py index 25cf3d4..dd0f029 100644 --- a/train.py +++ b/train.py @@ -63,7 +63,7 @@ def train(hyp): os.makedirs(wdir, exist_ok=True) last = wdir + 'last.pt' best = wdir + 'best.pt' - results_file = 'results.txt' + results_file = wdir + 'results.txt' epochs = opt.epochs # 300 batch_size = opt.batch_size # 64 @@ -360,7 +360,7 @@ def train(hyp): if len(n): n = '_' + n if not n.isnumeric() else n fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n - for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]): + for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', wdir + 'results.txt'], [flast, fbest, fresults]): if os.path.exists(f1): os.rename(f1, f2) # rename ispt = f2.endswith('.pt') # is *.pt @@ -382,10 +382,10 @@ if __name__ == '__main__': parser.add_argument('--batch-size', type=int, default=16) parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='*.cfg path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path') - parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes') + parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes. Assumes square imgs.') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', action='store_true', help='resume training from last.pt') - parser.add_argument('--resume_from_run', type=str, default='', 'resume training from last.pt in this dir') + parser.add_argument('--resume-from-run', type=str, default='', help='resume training from last.pt in this dir') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') @@ -397,18 +397,30 @@ if __name__ == '__main__': parser.add_argument('--adam', action='store_true', help='use adam optimizer') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%') parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') - parser.add_argument('--hyp', type=str, default='', help ='path to hyp yaml file') + parser.add_argument('--hyp', type=str, default='', help ='path to hyp yaml file. Not needed with --resume.') opt = parser.parse_args() - if opt.resume and not opt.resume_from_run: + # logic to resume from latest run if either --resume or --resume-from-run is selected + # Note if neither --resume or --resume-from-run, last is set to empty string + if opt.resume_from_run: + opt.resume = True + last = opt.resume_from_run + elif opt.resume and not opt.resume_from_run: last = get_latest_run() print(f'WARNING: No run provided to resume from. Resuming from most recent run found at {last}') else: - last = opt.resume_from_run + last = '' + + # if resuming, check for hyp file + if last: + last_hyp = last.replace('last.pt', 'hyp.yaml') + if os.path.exists(last_hyp): + opt.hyp = last_hyp + opt.weights = last if opt.resume else opt.weights opt.cfg = check_file(opt.cfg) # check file opt.data = check_file(opt.data) # check file - opt.hyp = check_file(opt.hyp) #check file + opt.hyp = check_file(opt.hyp) if opt.hyp else '' #check file print(opt) opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)