|
|
|
@ -126,13 +126,13 @@ def test(data,
|
|
|
|
|
# Append to pycocotools JSON dictionary
|
|
|
|
|
if save_json:
|
|
|
|
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
|
|
|
|
image_id = int(Path(paths[si]).stem.split('_')[-1])
|
|
|
|
|
image_id = Path(paths[si]).stem
|
|
|
|
|
box = pred[:, :4].clone() # xyxy
|
|
|
|
|
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
|
|
|
|
|
box = xyxy2xywh(box) # xywh
|
|
|
|
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
|
|
|
|
for p, b in zip(pred.tolist(), box.tolist()):
|
|
|
|
|
jdict.append({'image_id': image_id,
|
|
|
|
|
jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
|
|
|
|
|
'category_id': coco91class[int(p[5])],
|
|
|
|
|
'bbox': [round(x, 3) for x in b],
|
|
|
|
|
'score': round(p[4], 5)})
|
|
|
|
@ -200,8 +200,7 @@ def test(data,
|
|
|
|
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
|
|
|
|
|
|
|
|
|
# Save JSON
|
|
|
|
|
if save_json and map50 and len(jdict):
|
|
|
|
|
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
|
|
|
|
|
if save_json and len(jdict):
|
|
|
|
|
f = 'detections_val2017_%s_results.json' % \
|
|
|
|
|
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
|
|
|
|
|
print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
|
|
|
@ -212,6 +211,7 @@ def test(data,
|
|
|
|
|
from pycocotools.coco import COCO
|
|
|
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
|
|
|
|
|
|
imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
|
|
|
|
|
cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
|
|
|
|
|
cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
|
|
|
|
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
|
|
@ -221,8 +221,7 @@ def test(data,
|
|
|
|
|
cocoEval.summarize()
|
|
|
|
|
map, map50 = cocoEval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
|
|
|
|
except:
|
|
|
|
|
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
|
|
|
|
|
'See https://github.com/cocodataset/cocoapi/issues/356')
|
|
|
|
|
print('pycocotools not evaluated')
|
|
|
|
|
|
|
|
|
|
# Return results
|
|
|
|
|
model.float() # for training
|
|
|
|
|