diff --git a/utils/utils.py b/utils/utils.py index 7069181..dd12201 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -719,7 +719,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 return x, x.max(1)[0] # x, best_x def fitness(k): # mutation fitness - _, best = metric(k) + _, best = metric(torch.tensor(k, dtype=torch.float32)) return (best * (best > thr).float()).mean() # fitness def print_results(k): @@ -743,8 +743,8 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) - wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float() # wh - wh = wh[(wh > 2.0).all(1)].numpy() # filter > 2 pixels + wh = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh + wh = wh[(wh > 2.0).all(1)] # filter > 2 pixels # Kmeans calculation from scipy.cluster.vq import kmeans @@ -752,7 +752,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 s = wh.std(0) # sigmas for whitening k, dist = kmeans(wh / s, n, iter=30) # points, mean distance k *= s - wh = torch.tensor(wh) + wh = torch.tensor(wh, dtype=torch.float32) k = print_results(k) # Plot @@ -771,7 +771,7 @@ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=10 # Evolve npr = np.random f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma - for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm:'): + for _ in tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm'): v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)