|
|
|
@ -919,6 +919,15 @@ def increment_dir(dir, comment=''):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Plotting functions ---------------------------------------------------------------------------------------------------
|
|
|
|
|
def hist2d(x, y, n=100):
|
|
|
|
|
# 2d histogram used in labels.png and evolve.png
|
|
|
|
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
|
|
|
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
|
|
|
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
|
|
|
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
|
|
|
|
return np.log(hist[xidx, yidx])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
|
|
|
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
|
|
|
|
def butter_lowpass(cutoff, fs, order):
|
|
|
|
@ -1130,13 +1139,6 @@ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_st
|
|
|
|
|
|
|
|
|
|
def plot_labels(labels, save_dir=''):
|
|
|
|
|
# plot dataset labels
|
|
|
|
|
def hist2d(x, y, n=100):
|
|
|
|
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
|
|
|
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
|
|
|
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
|
|
|
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
|
|
|
|
return np.log(hist[xidx, yidx])
|
|
|
|
|
|
|
|
|
|
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
|
|
|
|
nc = int(c.max() + 1) # number of classes
|
|
|
|
|
|
|
|
|
@ -1154,23 +1156,25 @@ def plot_labels(labels, save_dir=''):
|
|
|
|
|
plt.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_evolution_results(yaml_file='hyp_evolved.yaml'): # from utils.utils import *; plot_evolution_results()
|
|
|
|
|
def plot_evolution(yaml_file='runs/evolve/hyp_evolved.yaml'): # from utils.utils import *; plot_evolution()
|
|
|
|
|
# Plot hyperparameter evolution results in evolve.txt
|
|
|
|
|
with open(yaml_file) as f:
|
|
|
|
|
hyp = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
|
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
|
|
|
|
f = fitness(x)
|
|
|
|
|
# weights = (f - f.min()) ** 2 # for weighted results
|
|
|
|
|
plt.figure(figsize=(14, 10), tight_layout=True)
|
|
|
|
|
plt.figure(figsize=(10, 10), tight_layout=True)
|
|
|
|
|
matplotlib.rc('font', **{'size': 8})
|
|
|
|
|
for i, (k, v) in enumerate(hyp.items()):
|
|
|
|
|
y = x[:, i + 7]
|
|
|
|
|
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
|
|
|
|
mu = y[f.argmax()] # best single result
|
|
|
|
|
plt.subplot(4, 6, i + 1)
|
|
|
|
|
plt.plot(mu, f.max(), 'o', markersize=10)
|
|
|
|
|
plt.plot(y, f, '.')
|
|
|
|
|
plt.subplot(5, 5, i + 1)
|
|
|
|
|
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
|
|
|
|
plt.plot(mu, f.max(), 'k+', markersize=15)
|
|
|
|
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
|
|
|
|
if i % 5 != 0:
|
|
|
|
|
plt.yticks([])
|
|
|
|
|
print('%15s: %.3g' % (k, mu))
|
|
|
|
|
plt.savefig('evolve.png', dpi=200)
|
|
|
|
|
print('\nPlot saved as evolve.png')
|
|
|
|
|