diff --git a/test.py b/test.py index 523c50c..8d252ff 100644 --- a/test.py +++ b/test.py @@ -35,7 +35,7 @@ def test(data, google_utils.attempt_download(weights) model = torch.load(weights, map_location=device)['model'].float() # load to FP32 torch_utils.model_info(model) - # model.fuse() + model.fuse() model.to(device) if half: model.half() # to FP16 @@ -71,7 +71,7 @@ def test(data, batch_size, rect=True, # rectangular inference single_cls=opt.single_cls, # single class mode - pad=0.0 if fast else 0.5) # padding + pad=0.5) # padding batch_size = min(batch_size, len(dataset)) nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers dataloader = DataLoader(dataset, diff --git a/utils/utils.py b/utils/utils.py index bce8a10..22c32e6 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -528,7 +528,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c fast |= conf_thres > 0.001 # fast mode if fast: merge = False - multi_label = False + multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) else: merge = True # merge for best mAP (adds 0.5ms/img) multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)