|
|
|
@ -1,9 +1,8 @@
|
|
|
|
|
import argparse
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
from utils import google_utils
|
|
|
|
|
from models.experimental import *
|
|
|
|
|
from utils.datasets import *
|
|
|
|
|
from utils.utils import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test(data,
|
|
|
|
@ -22,28 +21,26 @@ def test(data,
|
|
|
|
|
merge=False):
|
|
|
|
|
|
|
|
|
|
# Initialize/load model and set device
|
|
|
|
|
if model is None:
|
|
|
|
|
training = False
|
|
|
|
|
merge = opt.merge # use Merge NMS
|
|
|
|
|
training = model is not None
|
|
|
|
|
if training: # called by train.py
|
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
|
|
|
|
|
|
else: # called directly
|
|
|
|
|
device = torch_utils.select_device(opt.device, batch_size=batch_size)
|
|
|
|
|
merge = opt.merge # use Merge NMS
|
|
|
|
|
|
|
|
|
|
# Remove previous
|
|
|
|
|
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
|
|
|
|
|
os.remove(f)
|
|
|
|
|
|
|
|
|
|
# Load model
|
|
|
|
|
google_utils.attempt_download(weights)
|
|
|
|
|
model = torch.load(weights, map_location=device)['model'].float().fuse().to(device) # load to FP32
|
|
|
|
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
|
|
|
|
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
|
|
|
|
|
|
|
|
|
|
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
|
|
|
|
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
|
|
|
|
# model = nn.DataParallel(model)
|
|
|
|
|
|
|
|
|
|
else: # called by train.py
|
|
|
|
|
training = True
|
|
|
|
|
device = next(model.parameters()).device # get model device
|
|
|
|
|
|
|
|
|
|
# Half
|
|
|
|
|
half = device.type != 'cpu' and torch.cuda.device_count() == 1 # half precision only supported on single-GPU
|
|
|
|
|
if half:
|
|
|
|
@ -58,11 +55,11 @@ def test(data,
|
|
|
|
|
niou = iouv.numel()
|
|
|
|
|
|
|
|
|
|
# Dataloader
|
|
|
|
|
if dataloader is None: # not training
|
|
|
|
|
if not training:
|
|
|
|
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
|
|
|
|
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
|
|
|
|
|
path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
|
|
|
|
|
dataloader = create_dataloader(path, imgsz, batch_size, int(max(model.stride)), opt,
|
|
|
|
|
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
|
|
|
|
|
hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]
|
|
|
|
|
|
|
|
|
|
seen = 0
|
|
|
|
@ -195,7 +192,7 @@ def test(data,
|
|
|
|
|
if save_json and map50 and len(jdict):
|
|
|
|
|
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
|
|
|
|
|
f = 'detections_val2017_%s_results.json' % \
|
|
|
|
|
(weights.split(os.sep)[-1].replace('.pt', '') if weights else '') # filename
|
|
|
|
|
(weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
|
|
|
|
|
print('\nCOCO mAP with pycocotools... saving %s...' % f)
|
|
|
|
|
with open(f, 'w') as file:
|
|
|
|
|
json.dump(jdict, file)
|
|
|
|
@ -228,7 +225,7 @@ def test(data,
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
parser = argparse.ArgumentParser(prog='test.py')
|
|
|
|
|
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='model.pt path')
|
|
|
|
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
|
|
|
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
|
|
|
|
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
|
|
|
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
|
|
|
|