Before submitting a bug report, please ensure that you are using the latest versions of:
- Python
- PyTorch
- This repository (run `git fetch && git status -uno` to check and `git pull` to update)
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you:
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
- **Common dataset**: coco.yaml or coco128.yaml
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#reproduce-our-environment
**Your issue must be reproducible on a public dataset (i.e COCO) using the latest version of the repository, and you must supply code to reproduce, or we can not help you.**
If this is a custom training question we suggest you include your `train*.jpg`, `test*.jpg` and `results.png` figures.
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`.
## 🐛 Bug
A clear and concise description of what the bug is.
## To Reproduce
**REQUIRED**: Code to reproduce your issue below
## To Reproduce (REQUIRED)
Input:
```
import torch
a = torch.tensor([5])
c = a / 0
```
Output:
```
python train.py ...
Traceback (most recent call last):
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-5-be04c762b799>", line 5, in <module>
c = a / 0
RuntimeError: ZeroDivisionError
```
## Expected behavior
A clear and concise description of what you expected to happen.
## Environment
If applicable, add screenshots to help explain your problem.
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<imgsrc="https://user-images.githubusercontent.com/26833433/84200349-729f2680-aa5b-11ea-8f9a-604c9e01a658.png" width="1000">** GPU Latency measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP32 inference, postprocessing and NMS.
<imgsrc="https://user-images.githubusercontent.com/26833433/85340570-30360a80-b49b-11ea-87cf-bdf33d53ae15.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates to all YOLOv5 models. New models are faster, smaller and more accurate. Credit to @WongKinYiu for his excellent work with CSP.
- **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations, YOLOv5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) bottlenecks, [YOLOv4](https://github.com/AlexeyAB/darknet) features, as well as PANet or BiFPN heads.
- **April 1, 2020**: Begin development of a 100% PyTorch, scaleable YOLOv3/4-based group of future models, in a range of compound-scaled sizes. Models will be defined by new user-friendly `*.yaml` files. New training methods will be simpler to start, faster to finish, and more robust to training a wider variety of custom dataset.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, faster inference and improved mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations.
- **April 1, 2020**: Start development of future [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models in a range of compound-scaled sizes.
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
** Latency<sub>GPU</sub> measures end-to-end latency per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP32 inference at batch size 32, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
@ -74,9 +77,12 @@ Results saved to /content/yolov5/inference/output
## Reproduce Our Training
Run command below. Training times for yolov5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster).
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Google Cloud** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Google Colab Notebook** with 12 hours of free GPU time. <ahref="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) 
Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:
- **Cloud-based AI** surveillance systems operating on **hundreds of HD video streams in realtime.**
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.**
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.**
- **Custom data training**, hyperparameter evolution, and model exportation to any destination.