diff --git a/.github/workflows/ci-testing.yml b/.github/workflows/ci-testing.yml
index 1a5ea58..3bfb6f2 100644
--- a/.github/workflows/ci-testing.yml
+++ b/.github/workflows/ci-testing.yml
@@ -71,9 +71,9 @@ jobs:
# detect custom
python detect.py --weights runs/exp0/weights/last.pt --device $di
# test official
- python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 1
+ python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 1
# test custom
- python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 1
+ python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 1
# inspect
python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
# export
diff --git a/README.md b/README.md
index 0d5a38e..c80b139 100755
--- a/README.md
+++ b/README.md
@@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d
** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
-** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001`
-** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1`
+** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
+** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
diff --git a/eval.py b/test.py
similarity index 99%
rename from eval.py
rename to test.py
index 4aa692e..ed7e29c 100644
--- a/eval.py
+++ b/test.py
@@ -233,7 +233,7 @@ def test(data,
if __name__ == '__main__':
- parser = argparse.ArgumentParser(prog='eval.py')
+ parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
diff --git a/train.py b/train.py
index 1c28fec..879bb2e 100644
--- a/train.py
+++ b/train.py
@@ -7,7 +7,7 @@ import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
-import eval # import eval.py to get mAP after each epoch
+import test # import test.py to get mAP after each epoch
from models.yolo import Model
from utils import google_utils
from utils.datasets import *
@@ -291,7 +291,7 @@ def train(hyp):
ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
- results, maps, times = eval.test(opt.data,
+ results, maps, times = test.test(opt.data,
batch_size=batch_size,
imgsz=imgsz_test,
save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
diff --git a/tutorial.ipynb b/tutorial.ipynb
index 228a79b..d3418cc 100644
--- a/tutorial.ipynb
+++ b/tutorial.ipynb
@@ -236,7 +236,7 @@
},
"source": [
"# Run YOLOv5x on COCO val2017\n",
- "!python eval.py --weights yolov5x.pt --data coco.yaml --img 672"
+ "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
],
"execution_count": null,
"outputs": [
@@ -319,7 +319,7 @@
},
"source": [
"# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
- "!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
+ "!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
],
"execution_count": null,
"outputs": []
@@ -717,7 +717,7 @@
"for x in best*\n",
"do\n",
" gsutil cp gs://*/*/*/$x.pt .\n",
- " python eval.py --weights $x.pt --data coco.yaml --img 672\n",
+ " python test.py --weights $x.pt --data coco.yaml --img 672\n",
"done"
],
"execution_count": null,
@@ -744,8 +744,8 @@
" do\n",
" python detect.py --weights $x.pt --device $di # detect official\n",
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
- " python eval.py --weights $x.pt --device $di # test official\n",
- " python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
+ " python test.py --weights $x.pt --device $di # test official\n",
+ " python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
" done\n",
" python models/yolo.py --cfg $x.yaml # inspect\n",
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",
diff --git a/utils/utils.py b/utils/utils.py
index 209e884..ce1d910 100755
--- a/utils/utils.py
+++ b/utils/utils.py
@@ -1087,7 +1087,7 @@ def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
- # Plot study.txt generated by eval.py
+ # Plot study.txt generated by test.py
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
ax = ax.ravel()