diff --git a/.github/workflows/ci-testing.yml b/.github/workflows/ci-testing.yml
index cda65a9..6080816 100644
--- a/.github/workflows/ci-testing.yml
+++ b/.github/workflows/ci-testing.yml
@@ -69,9 +69,9 @@ jobs:
# detect custom
python detect.py --weights runs/exp0/weights/last.pt --device $di
# test official
- python test.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
+ python eval.py --weights weights/${{ matrix.yolo5-model }}.pt --device $di --batch-size 2
# test custom
- python test.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
+ python eval.py --weights runs/exp0/weights/last.pt --device $di --batch-size 2
# inspect
python models/yolo.py --cfg models/${{ matrix.yolo5-model }}.yaml
# export
diff --git a/README.md b/README.md
index c80b139..0d5a38e 100755
--- a/README.md
+++ b/README.md
@@ -27,8 +27,8 @@ This repository represents Ultralytics open-source research into future object d
** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
-** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 736 --conf 0.001`
-** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
+** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python eval.py --data coco.yaml --img 736 --conf 0.001`
+** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python eval.py --data coco.yaml --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
diff --git a/tutorial.ipynb b/tutorial.ipynb
index d3418cc..228a79b 100644
--- a/tutorial.ipynb
+++ b/tutorial.ipynb
@@ -236,7 +236,7 @@
},
"source": [
"# Run YOLOv5x on COCO val2017\n",
- "!python test.py --weights yolov5x.pt --data coco.yaml --img 672"
+ "!python eval.py --weights yolov5x.pt --data coco.yaml --img 672"
],
"execution_count": null,
"outputs": [
@@ -319,7 +319,7 @@
},
"source": [
"# Run YOLOv5s on COCO test-dev2017 with argument --task test\n",
- "!python test.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
+ "!python eval.py --weights yolov5s.pt --data ./data/coco.yaml --task test"
],
"execution_count": null,
"outputs": []
@@ -717,7 +717,7 @@
"for x in best*\n",
"do\n",
" gsutil cp gs://*/*/*/$x.pt .\n",
- " python test.py --weights $x.pt --data coco.yaml --img 672\n",
+ " python eval.py --weights $x.pt --data coco.yaml --img 672\n",
"done"
],
"execution_count": null,
@@ -744,8 +744,8 @@
" do\n",
" python detect.py --weights $x.pt --device $di # detect official\n",
" python detect.py --weights runs/exp0/weights/last.pt --device $di # detect custom\n",
- " python test.py --weights $x.pt --device $di # test official\n",
- " python test.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
+ " python eval.py --weights $x.pt --device $di # test official\n",
+ " python eval.py --weights runs/exp0/weights/last.pt --device $di # test custom\n",
" done\n",
" python models/yolo.py --cfg $x.yaml # inspect\n",
" python models/export.py --weights $x.pt --img 640 --batch 1 # export\n",