diff --git a/models/yolo.py b/models/yolo.py index c69cfdb..7e36dab 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -20,7 +20,6 @@ class Detect(nn.Module): self.export = False # onnx export def forward(self, x): - x = x.copy() z = [] # inference output self.training |= self.export for i in range(self.nl): diff --git a/test.py b/test.py index c72998f..ce1ad08 100644 --- a/test.py +++ b/test.py @@ -244,7 +244,7 @@ if __name__ == '__main__': print(opt) # task = 'val', 'test', 'study' - if opt.task == 'val': # (default) run normally + if opt.task in ['val', 'test']: # (default) run normally test(opt.data, opt.weights, opt.batch_size, @@ -258,7 +258,7 @@ if __name__ == '__main__': elif opt.task == 'study': # run over a range of settings and save/plot for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']: f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to - x = list(range(256, 1024, 32)) # x axis + x = list(range(256, 1024, 64)) # x axis y = [] # y axis for i in x: # img-size print('\nRunning %s point %s...' % (f, i)) diff --git a/utils/datasets.py b/utils/datasets.py index 78b6690..5cdd95e 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -322,7 +322,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing elif mini > 1: shapes[i] = [1, 1 / mini] - self.batch_shapes = np.ceil(np.array(shapes) * img_size / 64.).astype(np.int) * 64 + self.batch_shapes = np.round(np.array(shapes) * img_size / 32. + 1.).astype(np.int) * 32 # Cache labels self.imgs = [None] * n