diff --git a/utils/utils.py b/utils/utils.py index 2205999..305486a 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -47,7 +47,7 @@ def check_git_status(): def check_img_size(img_size, s=32): # Verify img_size is a multiple of stride s - new_size = make_divisible(img_size, s) # ceil gs-multiple + new_size = make_divisible(img_size, int(s)) # ceil gs-multiple if new_size != img_size: print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size)) return new_size @@ -421,9 +421,7 @@ def compute_loss(p, targets, model): # predictions, targets, model ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor lcls, lbox, lobj = ft([0]), ft([0]), ft([0]) tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets - h = model.module.hyp if hasattr(model, 'module') else model.hyp # hyperparameters - nc = model.module.nc if hasattr(model, 'module') else model.nc - gr = model.module.gr if hasattr(model, 'module') else model.gr + h = model.hyp # hyperparameters red = 'mean' # Loss reduction (sum or mean) # Define criteria @@ -457,10 +455,10 @@ def compute_loss(p, targets, model): # predictions, targets, model lbox += (1.0 - giou).sum() if red == 'sum' else (1.0 - giou).mean() # giou loss # Obj - tobj[b, a, gj, gi] = (1.0 - gr) + gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio + tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio # Class - if nc > 1: # cls loss (only if multiple classes) + if model.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], cn) # targets t[range(nb), tcls[i]] = cp lcls += BCEcls(ps[:, 5:], t) # BCE @@ -479,7 +477,7 @@ def compute_loss(p, targets, model): # predictions, targets, model g = 3.0 # loss gain lobj *= g / bs if nt: - lcls *= g / nt / nc + lcls *= g / nt / model.nc lbox *= g / nt loss = lbox + lobj + lcls @@ -490,8 +488,6 @@ def build_targets(p, targets, model): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) det = model.module.model[-1] if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) \ else model.model[-1] # Detect() module - hyp = model.module.hyp if hasattr(model, 'module') else model.hyp - na, nt = det.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(6, device=targets.device) # normalized to gridspace gain @@ -507,7 +503,7 @@ def build_targets(p, targets, model): a, t, offsets = [], targets * gain, 0 if nt: r = t[None, :, 4:6] / anchors[:, None] # wh ratio - j = torch.max(r, 1. / r).max(2)[0] < hyp['anchor_t'] # compare + j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n) = wh_iou(anchors(3,2), gwh(n,2)) a, t = at[j], t.repeat(na, 1, 1)[j] # filter