diff --git a/models/common.py b/models/common.py index 5f5c502..eec00ff 100644 --- a/models/common.py +++ b/models/common.py @@ -6,11 +6,13 @@ import torch.nn.functional as F from utils.utils import * -def DWConv(c1, c2, k=1, s=1, act=True): # depthwise convolution +def DWConv(c1, c2, k=1, s=1, act=True): + # Depthwise convolution return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) -class Conv(nn.Module): # standard convolution +class Conv(nn.Module): + # Standard convolution def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups super(Conv, self).__init__() self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False) @@ -25,6 +27,7 @@ class Conv(nn.Module): # standard convolution class Bottleneck(nn.Module): + # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(Bottleneck, self).__init__() c_ = int(c2 * e) # hidden channels @@ -36,21 +39,8 @@ class Bottleneck(nn.Module): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) -class BottleneckLight(nn.Module): - def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion - super(BottleneckLight, self).__init__() - c_ = int(c2 * e) # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False) - self.bn = nn.BatchNorm2d(c2) - self.act = nn.LeakyReLU(0.1, inplace=True) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)))) - - class BottleneckCSP(nn.Module): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(BottleneckCSP, self).__init__() c_ = int(c2 * e) # hidden channels @@ -68,25 +58,8 @@ class BottleneckCSP(nn.Module): return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) -class Narrow(nn.Module): - def __init__(self, c1, c2, shortcut=True, g=1): # ch_in, ch_out, shortcut, groups - super(Narrow, self).__init__() - c_ = c2 // 2 # hidden channels - self.cv1 = Conv(c1, c_, 1, 1) - self.cv2 = Conv(c_, c2, 3, 1, g=g) - self.add = shortcut and c1 == c2 - - def forward(self, x): - return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) - - -class Origami(nn.Module): # 5-side layering - def forward(self, x): - y = F.pad(x, [1, 1, 1, 1]) - return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1) - - -class ConvPlus(nn.Module): # standard convolution +class ConvPlus(nn.Module): + # Plus-shaped convolution def __init__(self, c1, c2, k=3, s=1, g=1, bias=True): # ch_in, ch_out, kernel, stride, groups super(ConvPlus, self).__init__() self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias) @@ -96,7 +69,8 @@ class ConvPlus(nn.Module): # standard convolution return self.cv1(x) + self.cv2(x) -class SPP(nn.Module): # Spatial pyramid pooling layer used in YOLOv3-SPP +class SPP(nn.Module): + # Spatial pyramid pooling layer used in YOLOv3-SPP def __init__(self, c1, c2, k=(5, 9, 13)): super(SPP, self).__init__() c_ = c1 // 2 # hidden channels diff --git a/models/yolo.py b/models/yolo.py index 27960de..9a5b8da 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -176,9 +176,7 @@ def parse_model(md, ch): # model_dict, input_channels(3) elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: - c2 = sum([ch[x] for x in f]) - elif m is Origami: - c2 = ch[f] * 5 + c2 = sum([ch[-1 if x == -1 else x + 1] for x in f]) elif m is Detect: f = f or list(reversed([(-1 if j == i else j - 1) for j, x in enumerate(ch) if x == no])) else: diff --git a/utils/utils.py b/utils/utils.py index ffabd34..2ddaf84 100755 --- a/utils/utils.py +++ b/utils/utils.py @@ -468,6 +468,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c nx6 (x1, y1, x2, y2, conf, cls) """ nc = prediction[0].shape[1] - 5 # number of classes + xc = prediction[..., 4] > conf_thres # candidates # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height @@ -487,7 +488,7 @@ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, fast=False, c for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height - x = x[x[:, 4] > conf_thres] # confidence + x = x[xc[xi]] # confidence # If none remain process next image if not x.shape[0]: @@ -1074,9 +1075,9 @@ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_re for i in range(5): for j in [i, i + 5]: y = results[j, x] - # ax[i].plot(x, y, marker='.', label=s[j]) - y_smooth = butter_lowpass_filtfilt(y) - ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) + ax[i].plot(x, y, marker='.', label=s[j]) + # y_smooth = butter_lowpass_filtfilt(y) + # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) ax[i].set_title(t[i]) ax[i].legend()