You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
530 lines
26 KiB
530 lines
26 KiB
import argparse
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch.distributed as dist
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torch.optim.lr_scheduler as lr_scheduler
|
|
import torch.utils.data
|
|
import yaml
|
|
from torch.cuda import amp
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tqdm import tqdm
|
|
|
|
import test # import test.py to get mAP after each epoch
|
|
from models.yolo import Model
|
|
from utils.datasets import create_dataloader
|
|
from utils.general import (
|
|
torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
|
|
compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
|
|
check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution, set_logging)
|
|
from utils.google_utils import attempt_download
|
|
from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def train(hyp, opt, device, tb_writer=None):
|
|
logger.info(f'Hyperparameters {hyp}')
|
|
log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
|
|
wdir = str(log_dir / 'weights') + os.sep # weights directory
|
|
os.makedirs(wdir, exist_ok=True)
|
|
last = wdir + 'last.pt'
|
|
best = wdir + 'best.pt'
|
|
results_file = str(log_dir / 'results.txt')
|
|
epochs, batch_size, total_batch_size, weights, rank = \
|
|
opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
|
|
|
# TODO: Use DDP logging. Only the first process is allowed to log.
|
|
# Save run settings
|
|
with open(log_dir / 'hyp.yaml', 'w') as f:
|
|
yaml.dump(hyp, f, sort_keys=False)
|
|
with open(log_dir / 'opt.yaml', 'w') as f:
|
|
yaml.dump(vars(opt), f, sort_keys=False)
|
|
|
|
# Configure
|
|
cuda = device.type != 'cpu'
|
|
init_seeds(2 + rank)
|
|
with open(opt.data) as f:
|
|
data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
|
with torch_distributed_zero_first(rank):
|
|
check_dataset(data_dict) # check
|
|
train_path = data_dict['train']
|
|
test_path = data_dict['val']
|
|
nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
|
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
|
|
|
# Model
|
|
pretrained = weights.endswith('.pt')
|
|
if pretrained:
|
|
with torch_distributed_zero_first(rank):
|
|
attempt_download(weights) # download if not found locally
|
|
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
|
|
exclude = ['anchor'] if opt.cfg else [] # exclude keys
|
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
|
model.load_state_dict(state_dict, strict=False) # load
|
|
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
|
else:
|
|
model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
|
|
|
|
# Freeze
|
|
freeze = ['', ] # parameter names to freeze (full or partial)
|
|
if any(freeze):
|
|
for k, v in model.named_parameters():
|
|
if any(x in k for x in freeze):
|
|
print('freezing %s' % k)
|
|
v.requires_grad = False
|
|
|
|
# Optimizer
|
|
nbs = 64 # nominal batch size
|
|
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
|
|
|
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
|
for k, v in model.named_parameters():
|
|
v.requires_grad = True
|
|
if '.bias' in k:
|
|
pg2.append(v) # biases
|
|
elif '.weight' in k and '.bn' not in k:
|
|
pg1.append(v) # apply weight decay
|
|
else:
|
|
pg0.append(v) # all else
|
|
|
|
if opt.adam:
|
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
|
else:
|
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
|
|
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
|
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
|
del pg0, pg1, pg2
|
|
|
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
|
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
|
lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.8 + 0.2 # cosine
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
|
|
|
# Resume
|
|
start_epoch, best_fitness = 0, 0.0
|
|
if pretrained:
|
|
# Optimizer
|
|
if ckpt['optimizer'] is not None:
|
|
optimizer.load_state_dict(ckpt['optimizer'])
|
|
best_fitness = ckpt['best_fitness']
|
|
|
|
# Results
|
|
if ckpt.get('training_results') is not None:
|
|
with open(results_file, 'w') as file:
|
|
file.write(ckpt['training_results']) # write results.txt
|
|
|
|
# Epochs
|
|
start_epoch = ckpt['epoch'] + 1
|
|
if epochs < start_epoch:
|
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
|
(weights, ckpt['epoch'], epochs))
|
|
epochs += ckpt['epoch'] # finetune additional epochs
|
|
|
|
del ckpt, state_dict
|
|
|
|
# Image sizes
|
|
gs = int(max(model.stride)) # grid size (max stride)
|
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
|
|
|
# DP mode
|
|
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# SyncBatchNorm
|
|
if opt.sync_bn and cuda and rank != -1:
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
|
logger.info('Using SyncBatchNorm()')
|
|
|
|
# Exponential moving average
|
|
ema = ModelEMA(model) if rank in [-1, 0] else None
|
|
|
|
# DDP mode
|
|
if cuda and rank != -1:
|
|
model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
|
|
|
|
# Trainloader
|
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
|
|
cache=opt.cache_images, rect=opt.rect, rank=rank,
|
|
world_size=opt.world_size, workers=opt.workers)
|
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
|
nb = len(dataloader) # number of batches
|
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
|
|
|
# Testloader
|
|
if rank in [-1, 0]:
|
|
# local_rank is set to -1. Because only the first process is expected to do evaluation.
|
|
testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False,
|
|
cache=opt.cache_images, rect=True, rank=-1, world_size=opt.world_size,
|
|
workers=opt.workers)[0]
|
|
|
|
# Model parameters
|
|
hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
|
|
model.nc = nc # attach number of classes to model
|
|
model.hyp = hyp # attach hyperparameters to model
|
|
model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
|
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
|
|
model.names = names
|
|
|
|
# Class frequency
|
|
if rank in [-1, 0]:
|
|
labels = np.concatenate(dataset.labels, 0)
|
|
c = torch.tensor(labels[:, 0]) # classes
|
|
# cf = torch.bincount(c.long(), minlength=nc) + 1.
|
|
# model._initialize_biases(cf.to(device))
|
|
plot_labels(labels, save_dir=log_dir)
|
|
if tb_writer:
|
|
# tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
|
|
tb_writer.add_histogram('classes', c, 0)
|
|
|
|
# Check anchors
|
|
if not opt.noautoanchor:
|
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
|
|
|
# Start training
|
|
t0 = time.time()
|
|
nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
|
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
|
maps = np.zeros(nc) # mAP per class
|
|
results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
|
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
|
scaler = amp.GradScaler(enabled=cuda)
|
|
logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
|
|
logger.info('Using %g dataloader workers' % dataloader.num_workers)
|
|
logger.info('Starting training for %g epochs...' % epochs)
|
|
# torch.autograd.set_detect_anomaly(True)
|
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
|
model.train()
|
|
|
|
# Update image weights (optional)
|
|
if dataset.image_weights:
|
|
# Generate indices
|
|
if rank in [-1, 0]:
|
|
w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
|
|
image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
|
|
dataset.indices = random.choices(range(dataset.n), weights=image_weights,
|
|
k=dataset.n) # rand weighted idx
|
|
# Broadcast if DDP
|
|
if rank != -1:
|
|
indices = torch.zeros([dataset.n], dtype=torch.int)
|
|
if rank == 0:
|
|
indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int)
|
|
dist.broadcast(indices, 0)
|
|
if rank != 0:
|
|
dataset.indices = indices.cpu().numpy()
|
|
|
|
# Update mosaic border
|
|
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
|
|
|
mloss = torch.zeros(4, device=device) # mean losses
|
|
if rank != -1:
|
|
dataloader.sampler.set_epoch(epoch)
|
|
pbar = enumerate(dataloader)
|
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
|
|
if rank in [-1, 0]:
|
|
pbar = tqdm(pbar, total=nb) # progress bar
|
|
optimizer.zero_grad()
|
|
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
|
ni = i + nb * epoch # number integrated batches (since train start)
|
|
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
|
|
|
# Warmup
|
|
if ni <= nw:
|
|
xi = [0, nw] # x interp
|
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
|
for j, x in enumerate(optimizer.param_groups):
|
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
|
x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
|
if 'momentum' in x:
|
|
x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
|
|
|
|
# Multi-scale
|
|
if opt.multi_scale:
|
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
|
sf = sz / max(imgs.shape[2:]) # scale factor
|
|
if sf != 1:
|
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
|
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
|
|
|
# Autocast
|
|
with amp.autocast(enabled=cuda):
|
|
# Forward
|
|
pred = model(imgs)
|
|
|
|
# Loss
|
|
loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size
|
|
if rank != -1:
|
|
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
|
# if not torch.isfinite(loss):
|
|
# logger.info('WARNING: non-finite loss, ending training ', loss_items)
|
|
# return results
|
|
|
|
# Backward
|
|
scaler.scale(loss).backward()
|
|
|
|
# Optimize
|
|
if ni % accumulate == 0:
|
|
scaler.step(optimizer) # optimizer.step
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
if ema is not None:
|
|
ema.update(model)
|
|
|
|
# Print
|
|
if rank in [-1, 0]:
|
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
|
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
|
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
|
pbar.set_description(s)
|
|
|
|
# Plot
|
|
if ni < 3:
|
|
f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
|
|
result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
|
|
if tb_writer and result is not None:
|
|
tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
|
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
|
|
|
# end batch ------------------------------------------------------------------------------------------------
|
|
|
|
# Scheduler
|
|
scheduler.step()
|
|
|
|
# DDP process 0 or single-GPU
|
|
if rank in [-1, 0]:
|
|
# mAP
|
|
if ema is not None:
|
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
|
|
final_epoch = epoch + 1 == epochs
|
|
if not opt.notest or final_epoch: # Calculate mAP
|
|
results, maps, times = test.test(opt.data,
|
|
batch_size=total_batch_size,
|
|
imgsz=imgsz_test,
|
|
model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
|
|
single_cls=opt.single_cls,
|
|
dataloader=testloader,
|
|
save_dir=log_dir)
|
|
|
|
# Write
|
|
with open(results_file, 'a') as f:
|
|
f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
|
|
if len(opt.name) and opt.bucket:
|
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
|
|
|
# Tensorboard
|
|
if tb_writer:
|
|
tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
|
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
|
'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
|
|
for x, tag in zip(list(mloss[:-1]) + list(results), tags):
|
|
tb_writer.add_scalar(tag, x, epoch)
|
|
|
|
# Update best mAP
|
|
fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
|
|
if fi > best_fitness:
|
|
best_fitness = fi
|
|
|
|
# Save model
|
|
save = (not opt.nosave) or (final_epoch and not opt.evolve)
|
|
if save:
|
|
with open(results_file, 'r') as f: # create checkpoint
|
|
ckpt = {'epoch': epoch,
|
|
'best_fitness': best_fitness,
|
|
'training_results': f.read(),
|
|
'model': ema.ema.module if hasattr(ema, 'module') else ema.ema,
|
|
'optimizer': None if final_epoch else optimizer.state_dict()}
|
|
|
|
# Save last, best and delete
|
|
torch.save(ckpt, last)
|
|
if best_fitness == fi:
|
|
torch.save(ckpt, best)
|
|
del ckpt
|
|
# end epoch ----------------------------------------------------------------------------------------------------
|
|
# end training
|
|
|
|
if rank in [-1, 0]:
|
|
# Strip optimizers
|
|
n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
|
|
fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
|
|
for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
|
|
if os.path.exists(f1):
|
|
os.rename(f1, f2) # rename
|
|
ispt = f2.endswith('.pt') # is *.pt
|
|
strip_optimizer(f2) if ispt else None # strip optimizer
|
|
os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
|
|
# Finish
|
|
if not opt.evolve:
|
|
plot_results(save_dir=log_dir) # save as results.png
|
|
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
|
|
|
dist.destroy_process_group() if rank not in [-1, 0] else None
|
|
torch.cuda.empty_cache()
|
|
return results
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
|
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
|
parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml')
|
|
parser.add_argument('--epochs', type=int, default=300)
|
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
|
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
|
parser.add_argument('--resume', nargs='?', const='get_last', default=False,
|
|
help='resume from given path/last.pt, or most recent run if blank')
|
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
|
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
|
parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
|
parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
|
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
|
opt = parser.parse_args()
|
|
|
|
# Set DDP variables
|
|
opt.total_batch_size = opt.batch_size
|
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
|
set_logging(opt.global_rank)
|
|
|
|
# Resume
|
|
if opt.resume:
|
|
last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
|
|
if last and not opt.weights:
|
|
logger.info(f'Resuming training from {last}')
|
|
opt.weights = last if opt.resume and not opt.weights else opt.weights
|
|
if opt.global_rank in [-1, 0]:
|
|
check_git_status()
|
|
|
|
opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')
|
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
|
|
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
|
|
|
# DDP mode
|
|
if opt.local_rank != -1:
|
|
assert torch.cuda.device_count() > opt.local_rank
|
|
torch.cuda.set_device(opt.local_rank)
|
|
device = torch.device('cuda', opt.local_rank)
|
|
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
|
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
|
opt.batch_size = opt.total_batch_size // opt.world_size
|
|
|
|
logger.info(opt)
|
|
with open(opt.hyp) as f:
|
|
hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
|
|
|
|
# Train
|
|
if not opt.evolve:
|
|
tb_writer = None
|
|
if opt.global_rank in [-1, 0]:
|
|
logger.info('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
|
|
tb_writer = SummaryWriter(log_dir=increment_dir(Path(opt.logdir) / 'exp', opt.name)) # runs/exp
|
|
|
|
train(hyp, opt, device, tb_writer)
|
|
|
|
# Evolve hyperparameters (optional)
|
|
else:
|
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
|
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
|
'momentum': (0.1, 0.6, 0.98), # SGD momentum/Adam beta1
|
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
|
'giou': (1, 0.02, 0.2), # GIoU loss gain
|
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
|
'perspective': (1, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
|
'flipud': (0, 0.0, 1.0), # image flip up-down (probability)
|
|
'fliplr': (1, 0.0, 1.0), # image flip left-right (probability)
|
|
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
|
|
|
|
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
|
opt.notest, opt.nosave = True, True # only test/save final epoch
|
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
|
yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
|
|
if opt.bucket:
|
|
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
|
|
|
for _ in range(100): # generations to evolve
|
|
if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
|
|
# Select parent(s)
|
|
parent = 'single' # parent selection method: 'single' or 'weighted'
|
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
|
n = min(5, len(x)) # number of previous results to consider
|
|
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
|
w = fitness(x) - fitness(x).min() # weights
|
|
if parent == 'single' or len(x) == 1:
|
|
# x = x[random.randint(0, n - 1)] # random selection
|
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
|
elif parent == 'weighted':
|
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
|
|
|
# Mutate
|
|
mp, s = 0.9, 0.2 # mutation probability, sigma
|
|
npr = np.random
|
|
npr.seed(int(time.time()))
|
|
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
|
ng = len(meta)
|
|
v = np.ones(ng)
|
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
|
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
|
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
|
|
|
# Constrain to limits
|
|
for k, v in meta.items():
|
|
hyp[k] = max(hyp[k], v[1]) # lower limit
|
|
hyp[k] = min(hyp[k], v[2]) # upper limit
|
|
hyp[k] = round(hyp[k], 5) # significant digits
|
|
|
|
# Train mutation
|
|
results = train(hyp.copy(), opt, device)
|
|
|
|
# Write mutation results
|
|
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
|
|
|
# Plot results
|
|
plot_evolution(yaml_file)
|
|
print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
|
|
'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
|