You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.9 KiB
91 lines
2.9 KiB
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
|
|
|
|
Usage:
|
|
import torch
|
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
|
|
"""
|
|
|
|
dependencies = ['torch', 'yaml']
|
|
import torch
|
|
|
|
from models.yolo import Model
|
|
from utils import google_utils
|
|
|
|
|
|
def create(name, pretrained, channels, classes):
|
|
"""Creates a specified YOLOv5 model
|
|
|
|
Arguments:
|
|
name (str): name of model, i.e. 'yolov5s'
|
|
pretrained (bool): load pretrained weights into the model
|
|
channels (int): number of input channels
|
|
classes (int): number of model classes
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
model = Model('models/%s.yaml' % name, channels, classes)
|
|
if pretrained:
|
|
ckpt = '%s.pt' % name # checkpoint filename
|
|
google_utils.attempt_download(ckpt) # download if not found locally
|
|
state_dict = torch.load(ckpt)['model'].state_dict()
|
|
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].numel() == v.numel()} # filter
|
|
model.load_state_dict(state_dict, strict=False) # load
|
|
return model
|
|
|
|
|
|
def yolov5s(pretrained=False, channels=3, classes=80):
|
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5s', pretrained, channels, classes)
|
|
|
|
|
|
def yolov5m(pretrained=False, channels=3, classes=80):
|
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5m', pretrained, channels, classes)
|
|
|
|
|
|
def yolov5l(pretrained=False, channels=3, classes=80):
|
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5l', pretrained, channels, classes)
|
|
|
|
|
|
def yolov5x(pretrained=False, channels=3, classes=80):
|
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
|
|
|
Arguments:
|
|
pretrained (bool): load pretrained weights into the model, default=False
|
|
channels (int): number of input channels, default=3
|
|
classes (int): number of model classes, default=80
|
|
|
|
Returns:
|
|
pytorch model
|
|
"""
|
|
return create('yolov5x', pretrained, channels, classes)
|