parent
6bbc684f45
commit
c840fa81c9
@ -0,0 +1,45 @@
|
||||
from keras.preprocessing import sequence
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, Embedding
|
||||
from keras.layers import LSTM
|
||||
from keras.datasets import imdb
|
||||
|
||||
max_features = 20000
|
||||
# cut texts after this number of words (among top max_features most common words)
|
||||
maxlen = 80
|
||||
batch_size = 32
|
||||
|
||||
print('Loading data...')
|
||||
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
|
||||
print(len(x_train), 'train sequences')
|
||||
print(len(x_test), 'test sequences')
|
||||
|
||||
print('Pad sequences (samples x time)')
|
||||
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
|
||||
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
|
||||
print('x_train shape:', x_train.shape)
|
||||
print('x_test shape:', x_test.shape)
|
||||
|
||||
|
||||
print('Build model...')
|
||||
model = Sequential()
|
||||
model.add(Embedding(max_features, 128))
|
||||
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
|
||||
model.add(Dense(1, activation='sigmoid'))
|
||||
|
||||
# try using different optimizers and different optimizer configs
|
||||
model.compile(loss='binary_crossentropy',
|
||||
optimizer='adam',
|
||||
metrics=['accuracy'])
|
||||
|
||||
print(model.summary())
|
||||
|
||||
print('Train...')
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=15,
|
||||
validation_data=(x_test, y_test))
|
||||
score, acc = model.evaluate(x_test, y_test,
|
||||
batch_size=batch_size)
|
||||
print('Test score:', score)
|
||||
print('Test accuracy:', acc)
|
Binary file not shown.
Loading…
Reference in new issue