http://khan.github.io/KaTeX/
http://meta.wikimedia.org/wiki/Help:Displaying_a_formula
a^2
a^{2+2}
a_2
{x_2}^3
x_2^3
10^{10^{8}}
a_{i,j}
_nP_k
E=MC^2
\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
\left ( \frac{a}{b} \right )
\left \langle \frac{a}{b} \right \rangle
x > y = 100
c = \pm\sqrt{a^2 + b^2}
\left . \frac{A}{B} \right \} \to X
\left / \frac{a}{b} \right \backslash
\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
\frac{1}{2}=0.5
\dfrac{k}{k-1} = 0.5
\dbinom{n}{k} \binom{n}{k}
\oint_C x^3\, dx + 4y^2\, dy
\bigcap_1^n p \bigcup_1^k p
\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR
\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}
e^{i \pi} + 1 = 0
\left ( \frac{1}{2} \right )
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
\textstyle \sum_{k=1}^N k^2
\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n
\binom{n}{k}
0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
\displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
2 = \left(
\frac{\left(3-x\right) \times 2}{3-x}
\right)
S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
ax^2 + bx + c = 0\,
\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
= \int_a^x f(y)(x-y)\,dy
\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
{3^m\left(m\,3^n+n\,3^m\right)}
u'' + p(x)u' + q(x)u=f(x),\quad x>a
|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z)
\lim_{z\rightarrow z_0} f(z)=f(z_0)
\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}
\sum_{k=1}^N k^2
\textstyle \sum_{k=1}^N k^2
\prod_{i=1}^N x_i
\textstyle \prod_{i=1}^N x_i
\coprod_{i=1}^N x_i
\textstyle \coprod_{i=1}^N x_i
\int_{1}^{3}\frac{e^3/x}{x^2}\, dx
\int_C x^3\, dx + 4y^2\, dy
{}_1^2\!\Omega_3^4
x', y'', f', f''
\dot{x}, \ddot{x}
\hat a \ \bar b \ \vec c
\lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
\leftarrow \gets \rightarrow \to \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}