http://khan.github.io/KaTeX/

http://meta.wikimedia.org/wiki/Help:Displaying_a_formula

a^2 a^{2+2} a_2 {x_2}^3 x_2^3 10^{10^{8}} a_{i,j} _nP_k E=MC^2 \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \left ( \frac{a}{b} \right ) \left \langle \frac{a}{b} \right \rangle x > y = 100 c = \pm\sqrt{a^2 + b^2} \left . \frac{A}{B} \right \} \to X \left / \frac{a}{b} \right \backslash \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil \frac{1}{2}=0.5 \dfrac{k}{k-1} = 0.5 \dbinom{n}{k} \binom{n}{k} \oint_C x^3\, dx + 4y^2\, dy \bigcap_1^n p \bigcup_1^k p \phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)} e^{i \pi} + 1 = 0 \left ( \frac{1}{2} \right ) x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a} {\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1} \textstyle \sum_{k=1}^N k^2 \dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n \binom{n}{k} 0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+\cdots f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \displaystyle 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. 2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} ax^2 + bx + c = 0\, \int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy \sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)} u'' + p(x)u' + q(x)u=f(x),\quad x>a |\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z) \lim_{z\rightarrow z_0} f(z)=f(z_0) \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} \sum_{k=1}^N k^2 \textstyle \sum_{k=1}^N k^2 \prod_{i=1}^N x_i \textstyle \prod_{i=1}^N x_i \coprod_{i=1}^N x_i \textstyle \coprod_{i=1}^N x_i \int_{1}^{3}\frac{e^3/x}{x^2}\, dx \int_C x^3\, dx + 4y^2\, dy {}_1^2\!\Omega_3^4 x', y'', f', f'' \dot{x}, \ddot{x} \hat a \ \bar b \ \vec c \lessapprox \lesssim \eqslantless \leqslant \leqq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \smile \frown \wr \triangleleft \triangleright \infty \bot \top \leftarrow \gets \rightarrow \to \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}