# pacmanPlot.py # ------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). from graphicsDisplay import PacmanGraphics from graphicsDisplay import InfoPane import graphicsDisplay import graphicsUtils from game import GameStateData from game import AgentState from game import Configuration from game import Directions from layout import Layout from Tkinter import mainloop import math import numpy as np import time import plotUtil LINE_COLOR = graphicsUtils.formatColor(0, 1, 0) def plotPoints(x,y): """ Create a Pacman display, plotting the points (x[i],y[i]) for all i in len(x). This method will block control and hand it to the displayed window. x: array or list of N scalar values. y: array or list of N scalar values. >>> x = range(-3,4) >>> squared = lambda x : x**2 >>> y = map(squared, x) >>> pacmanPlot.plotPoints(x,y) """ display = PacmanPlot(x,y) display.takeControl() class PacmanPlot(PacmanGraphics): def __init__(self, x=None, y=None, zoom=1.0, frameTime=0.0): """ Create and dispaly a pacman plot figure. If both x and y are provided, plot the points (x[i],y[i]) for all i in len(x). This will draw on the existing pacman window (clearing it first) or create a new one if no window exists. x: array or list of N scalar values. Default=None, in which case no points will be plotted y: array or list of N scalar values. Default=None, in which case no points will be plotted """ super(PacmanPlot, self).__init__(zoom, frameTime) if x is None or y is None: width = 23 height = 23 xmin = -(width-1)/2+1 ymin = -(height-1)/2+1 self.initPlot(xmin, ymin, width, height) else: self.plot(x,y) def initPlot(self, xmin, ymin, width, height): if graphicsUtils._canvas is not None: graphicsUtils.clear_screen() # Initialize GameStateData with blank board with axes self.width = width self.height = height self.xShift = -(xmin-1) self.yShift = -(ymin-1) self.line = None self.zoom = min(30.0/self.width, 20.0/self.height) self.gridSize = graphicsDisplay.DEFAULT_GRID_SIZE * self.zoom # fullRow = ['%']*self.width # row = ((self.width-1)/2)*[' '] + ['%'] + ((self.width-1)/2)*[' '] # boardText = ((self.height-1)/2)*[row] + [fullRow] + ((self.height-1)/2)*[row] numSpaces = self.width-1 numSpacesLeft = self.xShift numSpacesRight = numSpaces-numSpacesLeft numRows = self.height numRowsBelow = self.yShift numRowsAbove = numRows-1-numRowsBelow fullRow = ['%']*self.width if numSpacesLeft < 0: row = [' ']*self.width else: row = numSpacesLeft*[' '] + ['%'] + numSpacesRight*[' '] boardText = numRowsAbove*[row] + [fullRow] + numRowsBelow*[row] layout = Layout(boardText) self.blankGameState = GameStateData() self.blankGameState.initialize(layout, 0) self.initialize(self.blankGameState) title = 'Pacman Plot' graphicsUtils.changeText(self.infoPane.scoreText, title) graphicsUtils.refresh() def plot(self, x, y, weights=None, title='Pacman Plot'): """ Plot the input values x with their corresponding output values y (either true or predicted). Also, plot the linear regression line if weights are given; assuming h_w(x) = weights[0]*x + weights[1]. This will draw on the existing pacman window (clearing it first) or create a new one if no window exists. x: array or list of N scalar values. y: array or list of N scalar values. weights: array or list of 2 values (or if just one value, the bias weight is assumed to be zero). If None, no line is drawn. Default: None """ if np.array(x).size == 0: return if isinstance(x[0], np.ndarray): # Scrape the first element of each data point x = [data[0] for data in x] xmin = int(math.floor(min(x))) ymin = int(math.floor(min(y))) xmax = int(math.ceil(max(x))) ymax = int(math.ceil(max(y))) width = xmax-xmin+3 height = ymax-ymin+3 self.initPlot(xmin, ymin, width, height) gameState = self.blankGameState.deepCopy() gameState.agentStates = [] # Add ghost at each point for (px,py) in zip(x,y): point = (px+self.xShift, py+self.yShift) gameState.agentStates.append( AgentState( Configuration( point, Directions.STOP), False) ) # self.initialize(gameState) graphicsUtils.clear_screen() self.infoPane = InfoPane(gameState.layout, self.gridSize) self.drawStaticObjects(gameState) self.drawAgentObjects(gameState) graphicsUtils.changeText(self.infoPane.scoreText, title) graphicsUtils.refresh() def setWeights(self, weights): pass def takeControl(self): """ Give full control to the window. Blocks current thread. Program will exit when window is closed. """ mainloop() # def animate(): # numSteps = width-2 # for i in range(numSteps): # x = point1[0] + i*dx*1.0/numSteps # y = point1[1] + i*dy*1.0/numSteps # newPacman = AgentState( Configuration( (x,y), angle), True) # display.animatePacman(newPacman, display.agentImages[0][0], display.agentImages[0][1]) # display.agentImages[0] = (newPacman, display.agentImages[0][1]) # newPacman = AgentState( Configuration( point2, angle), True) # display.animatePacman(newPacman, display.agentImages[0][0], display.agentImages[0][1]) # display.agentImages[0] = (newPacman, display.agentImages[0][1]) class PacmanPlotRegression(PacmanPlot): def __init__(self, zoom=1.0, frameTime=0.0): super(PacmanPlotRegression, self).__init__(zoom=zoom, frameTime=frameTime) self.addPacmanToLineStart = True def plot(self, x, y, weights=None, title='Linear Regression'): """ Plot the input values x with their corresponding output values y (either true or predicted). Also, plot the linear regression line if weights are given; assuming h_w(x) = weights[0]*x + weights[1]. This will draw on the existing pacman window (clearing it first) or create a new one if no window exists. x: array or list of N scalar values. y: array or list of N scalar values. weights: array or list of 2 values (or if just one value, the bias weight is assumed to be zero). If None, no line is drawn. Default: None """ if np.array(x).size == 0: return if isinstance(x[0], np.ndarray): # Scrape the first element of each data point x = [data[0] for data in x] xmin = int(math.floor(min(x))) ymin = int(math.floor(min(y))) xmax = int(math.ceil(max(x))) ymax = int(math.ceil(max(y))) width = xmax-xmin+3 height = ymax-ymin+3 self.initPlot(xmin, ymin, width, height) gameState = self.blankGameState.deepCopy() gameState.agentStates = [] # Put pacman in bottom left if self.addPacmanToLineStart is True: gameState.agentStates.append( AgentState( Configuration( (1,1), Directions.STOP), True) ) # Add ghost at each point for (px,py) in zip(x,y): point = (px+self.xShift, py+self.yShift) gameState.agentStates.append( AgentState( Configuration( point, Directions.STOP), False) ) # self.initialize(gameState) graphicsUtils.clear_screen() self.infoPane = InfoPane(gameState.layout, self.gridSize) self.drawStaticObjects(gameState) self.drawAgentObjects(gameState) graphicsUtils.changeText(self.infoPane.scoreText, title) graphicsUtils.refresh() if weights is not None: self.setWeights(weights) def setWeights(self, weights): """ Plot the linear regression line for given weights; assuming h_w(x) = weights[0]*x + weights[1]. This will draw on the existing pacman window with the existing points weights: array or list of 2 values (or if just one value, the bias weight is assumed to be zero). If None, no line is drawn. Default: None """ weights = np.array(weights) if weights.size >= 2: w = weights[0] b = weights[1] else: w = float(weights) b = 0 # xmin = min(x) # xmax = max(x) # # ymin = w*xmin + b # ymax = w*xmax + b # # point1 = (xmin+self.xShift, ymin+self.yShift) # point2 = (xmax+self.xShift, ymax+self.yShift) (point1, point2) = plotUtil.lineBoxIntersection(w, -1, b, 1-self.xShift, 1-self.yShift, self.width-2-self.xShift, self.height-2-self.yShift) if point1 is not None and point2 is not None: point1 = (point1[0]+self.xShift, point1[1]+self.yShift) point2 = (point2[0]+self.xShift, point2[1]+self.yShift) dx = point2[0]-point1[0] dy = point2[1]-point1[1] if dx == 0: angle = 90 + 180*dy*1.0/abs(dy) else: angle = math.atan(dy*1.0/dx)*180.0/math.pi if self.line is not None: graphicsUtils.remove_from_screen(self.line) self.line = graphicsUtils.polygon([self.to_screen(point1), self.to_screen(point2)], LINE_COLOR, filled=0, behind=0) if self.addPacmanToLineStart is True and len(self.agentImages) > 0: # Bring pacman to front of display graphicsUtils._canvas.tag_raise(self.agentImages[0][1][0]) # Put pacman at beginning of line self.movePacman(point1, angle, self.agentImages[0][1]) graphicsUtils.refresh() class PacmanPlotLogisticRegression1D(PacmanPlot): def __init__(self, zoom=1.0, frameTime=0.0): super(PacmanPlotLogisticRegression1D, self).__init__(zoom=zoom, frameTime=frameTime) self.addPacmanToLineStart = False def plot(self, x, y, weights=None, title='Logistic Regression'): """ Plot the 1D input points, data[i], colored based on their corresponding labels (either true or predicted). Also, plot the logistic function fit if weights are given. This will draw on the existing pacman window (clearing it first) or create a new one if no window exists. x: list of 1D points, where each 1D point in the list is a 1 element numpy.ndarray y: list of N labels, one for each point in data. Labels can be of any type that can be converted a string. weights: array of 2 values the first one is the weight on the data and the second value is the bias weight term. If there are only 1 values in weights, the bias term is assumed to be zero. If None, no line is drawn. Default: None """ if np.array(x).size == 0: return # Process data, sorting by label possibleLabels = list(set(y)) sortedX = {} for label in possibleLabels: sortedX[label] = [] for i in range(len(x)): sortedX[y[i]].append(x[i]) xmin = int(math.floor(min(x))) xmax = int(math.ceil(max(x))) ymin = int(math.floor(0))-1 ymax = int(math.ceil(1)) width = xmax-xmin+3 height = ymax-ymin+3 self.initPlot(xmin, ymin, width, height) gameState = self.blankGameState.deepCopy() gameState.agentStates = [] # Put pacman in bottom left if self.addPacmanToLineStart is True: gameState.agentStates.append( AgentState( Configuration( (1,1), Directions.STOP), True) ) # Add ghost at each point for (py, label) in enumerate(possibleLabels): pointsX = sortedX[label] for px in pointsX: point = (px+self.xShift, py+self.yShift) agent = AgentState( Configuration( point, Directions.STOP), False) agent.isPacman = 1-py gameState.agentStates.append(agent) # self.initialize(gameState) graphicsUtils.clear_screen() self.infoPane = InfoPane(gameState.layout, self.gridSize) self.drawStaticObjects(gameState) self.drawAgentObjects(gameState) graphicsUtils.changeText(self.infoPane.scoreText, title) graphicsUtils.refresh() if weights is not None: self.setWeights(weights) def setWeights(self, weights): """ Plot the logistic regression line for given weights This will draw on the existing pacman window with the existing points weights: array or list of 2 values (or if just one value, the bias weight is assumed to be zero). If None, no line is drawn. Default: None """ weights = np.array(weights) if weights.size >= 2: w = weights[0] b = weights[1] else: w = float(weights) b = 0 xmin = 1 - self.xShift xmax = self.width-2 - self.xShift x = np.linspace(xmin, xmax,30) y = 1.0/(1+np.exp(-(w*x+b))) x += self.xShift y += self.yShift if self.line is not None: for obj in self.line: graphicsUtils.remove_from_screen(obj) self.line = [] prevPoint = self.to_screen((x[0],y[0])) for i in xrange(1,len(x)): point = self.to_screen((x[i],y[i])) self.line.append(graphicsUtils.line(prevPoint, point, LINE_COLOR)) prevPoint = point # prevPoint = self.to_screen((x[0],y[0])) # for i in xrange(1,len(x)): # point = self.to_screen((x[i],y[i])) # line.append(graphicsUtils.line(prevPoint, point, LINE_COLOR, filled=0, behind=0) # # prevPoint = point if self.addPacmanToLineStart is True and len(self.agentImages) > 0: # Bring pacman to front of display graphicsUtils._canvas.tag_raise(self.agentImages[0][1][0]) # Put pacman at beginning of line if w >= 0: self.movePacman((x[0]-0.5,y[0]), Directions.EAST, self.agentImages[0][1]) else: self.movePacman((x[-1]+0.5,y[-1]), Directions.WEST, self.agentImages[0][1]) graphicsUtils.refresh() class PacmanPlotClassification2D(PacmanPlot): def __init__(self, zoom=1.0, frameTime=0.0): super(PacmanPlotClassification2D, self).__init__(zoom=zoom, frameTime=frameTime) self.prev_weights = None def plot(self, x, y, weights=None, title='Linear Classification'): """ Plot the 2D input points, data[i], colored based on their corresponding labels (either true or predicted). Also, plot the linear separator line if weights are given. This will draw on the existing pacman window (clearing it first) or create a new one if no window exists. x: list of 2D points, where each 2D point in the list is a 2 element numpy.ndarray y: list of N labels, one for each point in data. Labels can be of any type that can be converted a string. weights: array of 3 values the first two are the weight on the data and the third value is the bias weight term. If there are only 2 values in weights, the bias term is assumed to be zero. If None, no line is drawn. Default: None """ if np.array(x).size == 0: return # Process data, sorting by label possibleLabels = list(set(y)) sortedX1 = {} sortedX2 = {} for label in possibleLabels: sortedX1[label] = [] sortedX2[label] = [] for i in range(len(x)): sortedX1[y[i]].append(x[i][0]) sortedX2[y[i]].append(x[i][1]) x1min = float("inf") x1max = float("-inf") for x1Values in sortedX1.values(): x1min = min(min(x1Values), x1min) x1max = max(max(x1Values), x1max) x2min = float("inf") x2max = float("-inf") for x2Values in sortedX2.values(): x2min = min(min(x2Values), x2min) x2max = max(max(x2Values), x2max) x1min = int(math.floor(x1min)) x1max = int(math.ceil(x1max)) x2min = int(math.floor(x2min)) x2max = int(math.ceil(x2max)) width = x1max-x1min+3 height = x2max-x2min+3 self.initPlot(x1min, x2min, width, height) gameState = self.blankGameState.deepCopy() gameState.agentStates = [] # Add ghost/pacman at each point for (labelIndex, label) in enumerate(possibleLabels): pointsX1 = sortedX1[label] pointsX2 = sortedX2[label] for (px, py) in zip(pointsX1, pointsX2): point = (px+self.xShift, py+self.yShift) agent = AgentState( Configuration( point, Directions.STOP), False) agent.isPacman = (labelIndex==0) if labelIndex==2: agent.scaredTimer = 1 gameState.agentStates.append(agent) # self.initialize(gameState) graphicsUtils.clear_screen() self.infoPane = InfoPane(gameState.layout, self.gridSize) self.drawStaticObjects(gameState) self.drawAgentObjects(gameState) graphicsUtils.changeText(self.infoPane.scoreText, title) graphicsUtils.refresh() if weights is not None: self.setWeights(weights) def setWeights(self, weights): """ Plot the logistic regression line for given weights This will draw on the existing pacman window with the existing points weights: array or list of 2 values (or if just one value, the bias weight is assumed to be zero). If None, no line is drawn. Default: None """ weights = np.array(weights) if self.prev_weights is not None: if np.allclose(self.prev_weights, weights): return False # no line update self.prev_weights = weights.copy() w1 = weights[0] w2 = weights[1] if weights.size >= 3: b = weights[2] else: b = 0 # Line functions # Line where w1*x1 + w2*x2 + b = 0 # x2 = -(w1*x1 + b)/w2 or # x1 = -(w2*x2 + b)/w1 # Figure out where line intersections bounding box around points if w1 == 0 and w2 == 0: return (point1, point2) = plotUtil.lineBoxIntersection(w1, w2, b, 1-self.xShift, 1-self.yShift, self.width-2-self.xShift, self.height-2-self.yShift) if point1 is not None and point2 is not None: point1 = (point1[0]+self.xShift, point1[1]+self.yShift) point2 = (point2[0]+self.xShift, point2[1]+self.yShift) if self.line is not None: graphicsUtils.remove_from_screen(self.line) self.line = graphicsUtils.polygon([self.to_screen(point1), self.to_screen(point2)], LINE_COLOR, filled=0, behind=0) graphicsUtils.refresh() return True # updated line if __name__ == '__main__': """ Demo code """ # Regression display = PacmanPlotRegression() x = np.random.normal(0,1,10) display.plot(x*3, x**3) time.sleep(2) for i in range(6): display.setWeights([(5-i)/5.0]) time.sleep(1) time.sleep(1) # With offset display.setWeights([0, -5]) time.sleep(2) # Classification 2D display = PacmanPlotClassification2D() # Generate labeled points means = ((4,4), (-4,4), (0,-4)) labelNames= ('A','B','C') labels = [] data = [] for i in range(15): labelIndex = np.random.randint(len(labelNames)) labels.append(labelNames[labelIndex]) mean = np.array(means[labelIndex]) data.append(np.random.normal(mean,1,mean.shape)) display.plot(data, labels) time.sleep(2) for i in range(8): display.setWeights([4,i]) time.sleep(1) # With offset and horizontal separator display.setWeights([0, 1, -3]) time.sleep(2) # Logistic Regression display = PacmanPlotLogisticRegression1D() # Generate labeled points means = (1, -5) labelNames= ('A','B') labels = [] data = [] for i in range(15): labelIndex = np.random.randint(len(labelNames)) labels.append(labelNames[labelIndex]) mean = np.array(means[labelIndex]) data.append(np.random.normal(mean,3,mean.shape)) display.plot(data, labels) time.sleep(2) for i in range(8): display.setWeights(4-i) time.sleep(1) time.sleep(1) # With offset and horizontal separator display.setWeights([-3, -6]) # # Just some extra tests # display = PacmanPlotRegression() # display.plot([-2, 2, 2], [2, 2, -2], [4,0]) # display = PacmanPlotClassification2D() # display.plot([np.array([-1,1]), np.ones(2), np.array([1,-1])], [0,1,2], [1,0]) display.takeControl() # Blocked until the window is closed