# tensorflow_util.py # ------------------ # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). import numpy as np import tensorflow as tf import util _SESSION = None def get_session(): global _SESSION if _SESSION is None: # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) # _SESSION = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options)) _SESSION = tf.InteractiveSession() return _SESSION def cleanup_session(): global _SESSION del(_SESSION) _SESSION = None class MinibatchIndefinitelyGenerator(object): def __init__(self, data, batch_size, shuffle): """Generator to iterate through all the data indefinitely in batches. Args: data: list of numpy.arrays, where each of them must be of the same length on its leading dimension. batch_size: number of data points to return in a minibatch. It must be at least 1. shuffle: if True, the data is iterated in a random order, and this order differs for each pass of the data. """ if not isinstance(batch_size, int) or batch_size < 1: raise ValueError("batch_size should be a positive integer, %r given" % batch_size) self._data = data self._batch_size = batch_size self._shuffle = shuffle # total number of data points in data self._N = None for datum in self._data: if self._N is None: self._N = len(datum) else: if self._N != len(datum): raise ValueError("data have different leading dimensions: %d and %d" % (self._N, len(datum))) if self._shuffle: self._fixed_random = util.FixedRandom() self._indices = np.array([], dtype=int) def next(self): """Returns the next minibatch for each of the numpy.arrays in the data list. Returns: a tuple of batches of the data, where each batch in the tuple comes from each of the numpy.arrays data provided in the constructor. Examples: >>> gen = MinibatchIndefinitelyGenerator([np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])], 1, False) >>> print(gen.next()) (array([1]), array([4]), array([7])) >>> print(gen.next()) (array([2]), array([5]), array([8])) >>> gen = MinibatchIndefinitelyGenerator([np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])], 2, False) >>> print(gen.next()) (array([1, 2]), array([4, 5]), array([7, 8])) >>> print(gen.next()) (array([3, 1]), array([6, 4]), array([9, 7])) """ if len(self._indices) < self._batch_size: new_indices = np.arange(self._N) if self._shuffle: self._fixed_random.random.shuffle(new_indices) self._indices = np.append(self._indices, new_indices) excerpt, self._indices = np.split(self._indices, [self._batch_size]) data_batch = tuple(datum[excerpt] for datum in self._data) return data_batch def __iter__(self): return self def __next__(self): return self.next()