You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

64 lines
2.4 KiB

# randomness_check.py
# -------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import numpy as np
import tensorflow as tf
import models
import solvers
import tensorflow_util as tfu
def tinyDataSet():
training = np.array([[0,0,0], [1,0,0], [0,1,0], [0,0,1], [1,1,0], [0,1,1], [1,0,1], [1,1,1]])
trainingLabels = np.array([[0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0]])
validation = np.array([[1,0,1]])
validationLabels = np.array([[0,1]])
test = np.array([[1,0,1]])
testLabels = np.array([[1,0]])
return (training, trainingLabels, validation, validationLabels, test, testLabels)
def main():
dataset = tinyDataset()
input_data, target_data = dataset[:2]
W_init = np.array([[0.4, 0.0], [0.0, -0.2], [0.1, 0.0]], dtype=np.float32)
b_init = np.array([-0.5, 0.3], dtype=np.float32)
model = models.LinearRegressionModel(x_shape=(None, 3), W=W_init, b=b_init)
solver = solvers.GradientDescentSolver(learning_rate=0.1, iterations=1, momentum=0.9)
target_ph = tf.placeholder(tf.float32, shape=(None, 2))
loss_tensor = solvers.squared_error(model.prediction_tensor, target_ph)
param_vars = model.get_param_vars(trainable=True)
updates = solver.get_updates(loss_tensor, param_vars)
update_ops = [tf.assign(old, new) for (old, new) in updates]
# gradient and parameter values before updates
grad_tensors = tf.gradients(loss_tensor, param_vars)
feed_dict = dict([(model.input_ph, input_data), (target_ph, target_data)])
grads = [grad_tensor.eval(session=tfu.get_session(), feed_dict=feed_dict) for grad_tensor in grad_tensors]
param_values = model.get_param_values()
print(grads)
print(param_values)
tfu.get_session().run([loss_tensor] + update_ops, feed_dict=feed_dict)
print(model.get_param_values())
if __name__ == "__main__":
main()