You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8198 lines
213 KiB
8198 lines
213 KiB
/*
|
|
Copyright 2013 Google LLC All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at:
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
american fuzzy lop - fuzzer code
|
|
--------------------------------
|
|
|
|
Written and maintained by Michal Zalewski <lcamtuf@google.com>
|
|
|
|
Forkserver design by Jann Horn <jannhorn@googlemail.com>
|
|
|
|
This is the real deal: the program takes an instrumented binary and
|
|
attempts a variety of basic fuzzing tricks, paying close attention to
|
|
how they affect the execution path.
|
|
|
|
*/
|
|
|
|
#define AFL_MAIN
|
|
#include "android-ashmem.h"
|
|
#define MESSAGES_TO_STDOUT
|
|
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
#define _FILE_OFFSET_BITS 64
|
|
|
|
#include "config.h"
|
|
#include "types.h"
|
|
#include "debug.h"
|
|
#include "alloc-inl.h"
|
|
#include "hash.h"
|
|
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <dirent.h>
|
|
#include <ctype.h>
|
|
#include <fcntl.h>
|
|
#include <termios.h>
|
|
#include <dlfcn.h>
|
|
#include <sched.h>
|
|
|
|
#include <sys/wait.h>
|
|
#include <sys/time.h>
|
|
#include <sys/shm.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/file.h>
|
|
|
|
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
|
|
# include <sys/sysctl.h>
|
|
#endif /* __APPLE__ || __FreeBSD__ || __OpenBSD__ */
|
|
|
|
/* For systems that have sched_setaffinity; right now just Linux, but one
|
|
can hope... */
|
|
|
|
#ifdef __linux__
|
|
# define HAVE_AFFINITY 1
|
|
#endif /* __linux__ */
|
|
|
|
/* A toggle to export some variables when building as a library. Not very
|
|
useful for the general public. */
|
|
|
|
#ifdef AFL_LIB
|
|
# define EXP_ST
|
|
#else
|
|
# define EXP_ST static
|
|
#endif /* ^AFL_LIB */
|
|
|
|
/* Lots of globals, but mostly for the status UI and other things where it
|
|
really makes no sense to haul them around as function parameters. */
|
|
|
|
|
|
EXP_ST u8 *in_dir, /* Input directory with test cases */
|
|
*out_file, /* File to fuzz, if any */
|
|
*out_dir, /* Working & output directory */
|
|
*sync_dir, /* Synchronization directory */
|
|
*sync_id, /* Fuzzer ID */
|
|
*use_banner, /* Display banner */
|
|
*in_bitmap, /* Input bitmap */
|
|
*doc_path, /* Path to documentation dir */
|
|
*target_path, /* Path to target binary */
|
|
*orig_cmdline; /* Original command line */
|
|
|
|
EXP_ST u32 exec_tmout = EXEC_TIMEOUT; /* Configurable exec timeout (ms) */
|
|
static u32 hang_tmout = EXEC_TIMEOUT; /* Timeout used for hang det (ms) */
|
|
|
|
EXP_ST u64 mem_limit = MEM_LIMIT; /* Memory cap for child (MB) */
|
|
|
|
EXP_ST u32 cpu_to_bind = 0; /* id of free CPU core to bind */
|
|
|
|
static u32 stats_update_freq = 1; /* Stats update frequency (execs) */
|
|
|
|
EXP_ST u8 skip_deterministic, /* Skip deterministic stages? */
|
|
force_deterministic, /* Force deterministic stages? */
|
|
use_splicing, /* Recombine input files? */
|
|
dumb_mode, /* Run in non-instrumented mode? */
|
|
score_changed, /* Scoring for favorites changed? */
|
|
kill_signal, /* Signal that killed the child */
|
|
resuming_fuzz, /* Resuming an older fuzzing job? */
|
|
timeout_given, /* Specific timeout given? */
|
|
cpu_to_bind_given, /* Specified cpu_to_bind given? */
|
|
not_on_tty, /* stdout is not a tty */
|
|
term_too_small, /* terminal dimensions too small */
|
|
uses_asan, /* Target uses ASAN? */
|
|
no_forkserver, /* Disable forkserver? */
|
|
crash_mode, /* Crash mode! Yeah! */
|
|
in_place_resume, /* Attempt in-place resume? */
|
|
auto_changed, /* Auto-generated tokens changed? */
|
|
no_cpu_meter_red, /* Feng shui on the status screen */
|
|
no_arith, /* Skip most arithmetic ops */
|
|
shuffle_queue, /* Shuffle input queue? */
|
|
bitmap_changed = 1, /* Time to update bitmap? */
|
|
qemu_mode, /* Running in QEMU mode? */
|
|
skip_requested, /* Skip request, via SIGUSR1 */
|
|
run_over10m, /* Run time over 10 minutes? */
|
|
persistent_mode, /* Running in persistent mode? */
|
|
deferred_mode, /* Deferred forkserver mode? */
|
|
fast_cal; /* Try to calibrate faster? */
|
|
|
|
static s32 out_fd, /* Persistent fd for out_file */
|
|
dev_urandom_fd = -1, /* Persistent fd for /dev/urandom */
|
|
dev_null_fd = -1, /* Persistent fd for /dev/null */
|
|
fsrv_ctl_fd, /* Fork server control pipe (write) */
|
|
fsrv_st_fd; /* Fork server status pipe (read) */
|
|
|
|
static s32 forksrv_pid, /* PID of the fork server */
|
|
child_pid = -1, /* PID of the fuzzed program */
|
|
out_dir_fd = -1; /* FD of the lock file */
|
|
|
|
EXP_ST u8* trace_bits; /* SHM with instrumentation bitmap */
|
|
|
|
EXP_ST u8 virgin_bits[MAP_SIZE], /* Regions yet untouched by fuzzing */
|
|
virgin_tmout[MAP_SIZE], /* Bits we haven't seen in tmouts */
|
|
virgin_crash[MAP_SIZE]; /* Bits we haven't seen in crashes */
|
|
|
|
static u8 var_bytes[MAP_SIZE]; /* Bytes that appear to be variable */
|
|
|
|
static s32 shm_id; /* ID of the SHM region */
|
|
|
|
static volatile u8 stop_soon, /* Ctrl-C pressed? */
|
|
clear_screen = 1, /* Window resized? */
|
|
child_timed_out; /* Traced process timed out? */
|
|
|
|
EXP_ST u32 queued_paths, /* Total number of queued testcases */
|
|
queued_variable, /* Testcases with variable behavior */
|
|
queued_at_start, /* Total number of initial inputs */
|
|
queued_discovered, /* Items discovered during this run */
|
|
queued_imported, /* Items imported via -S */
|
|
queued_favored, /* Paths deemed favorable */
|
|
queued_with_cov, /* Paths with new coverage bytes */
|
|
pending_not_fuzzed, /* Queued but not done yet */
|
|
pending_favored, /* Pending favored paths */
|
|
cur_skipped_paths, /* Abandoned inputs in cur cycle */
|
|
cur_depth, /* Current path depth */
|
|
max_depth, /* Max path depth */
|
|
useless_at_start, /* Number of useless starting paths */
|
|
var_byte_count, /* Bitmap bytes with var behavior */
|
|
current_entry, /* Current queue entry ID */
|
|
havoc_div = 1; /* Cycle count divisor for havoc */
|
|
|
|
EXP_ST u64 total_crashes, /* Total number of crashes */
|
|
unique_crashes, /* Crashes with unique signatures */
|
|
total_tmouts, /* Total number of timeouts */
|
|
unique_tmouts, /* Timeouts with unique signatures */
|
|
unique_hangs, /* Hangs with unique signatures */
|
|
total_execs, /* Total execve() calls */
|
|
slowest_exec_ms, /* Slowest testcase non hang in ms */
|
|
start_time, /* Unix start time (ms) */
|
|
last_path_time, /* Time for most recent path (ms) */
|
|
last_crash_time, /* Time for most recent crash (ms) */
|
|
last_hang_time, /* Time for most recent hang (ms) */
|
|
last_crash_execs, /* Exec counter at last crash */
|
|
queue_cycle, /* Queue round counter */
|
|
cycles_wo_finds, /* Cycles without any new paths */
|
|
trim_execs, /* Execs done to trim input files */
|
|
bytes_trim_in, /* Bytes coming into the trimmer */
|
|
bytes_trim_out, /* Bytes coming outa the trimmer */
|
|
blocks_eff_total, /* Blocks subject to effector maps */
|
|
blocks_eff_select; /* Blocks selected as fuzzable */
|
|
|
|
static u32 subseq_tmouts; /* Number of timeouts in a row */
|
|
|
|
static u8 *stage_name = "init", /* Name of the current fuzz stage */
|
|
*stage_short, /* Short stage name */
|
|
*syncing_party; /* Currently syncing with... */
|
|
|
|
static s32 stage_cur, stage_max; /* Stage progression */
|
|
static s32 splicing_with = -1; /* Splicing with which test case? */
|
|
|
|
static u32 master_id, master_max; /* Master instance job splitting */
|
|
|
|
static u32 syncing_case; /* Syncing with case #... */
|
|
|
|
static s32 stage_cur_byte, /* Byte offset of current stage op */
|
|
stage_cur_val; /* Value used for stage op */
|
|
|
|
static u8 stage_val_type; /* Value type (STAGE_VAL_*) */
|
|
|
|
static u64 stage_finds[32], /* Patterns found per fuzz stage */
|
|
stage_cycles[32]; /* Execs per fuzz stage */
|
|
|
|
static u32 rand_cnt; /* Random number counter */
|
|
|
|
static u64 total_cal_us, /* Total calibration time (us) */
|
|
total_cal_cycles; /* Total calibration cycles */
|
|
|
|
static u64 total_bitmap_size, /* Total bit count for all bitmaps */
|
|
total_bitmap_entries; /* Number of bitmaps counted */
|
|
|
|
static s32 cpu_core_count; /* CPU core count */
|
|
|
|
#ifdef HAVE_AFFINITY
|
|
|
|
static s32 cpu_aff = -1; /* Selected CPU core */
|
|
|
|
#endif /* HAVE_AFFINITY */
|
|
|
|
static FILE* plot_file; /* Gnuplot output file */
|
|
|
|
struct queue_entry {
|
|
|
|
u8* fname; /* File name for the test case */
|
|
u32 len; /* Input length */
|
|
|
|
u8 cal_failed, /* Calibration failed? */
|
|
trim_done, /* Trimmed? */
|
|
was_fuzzed, /* Had any fuzzing done yet? */
|
|
passed_det, /* Deterministic stages passed? */
|
|
has_new_cov, /* Triggers new coverage? */
|
|
var_behavior, /* Variable behavior? */
|
|
favored, /* Currently favored? */
|
|
fs_redundant; /* Marked as redundant in the fs? */
|
|
|
|
u32 bitmap_size, /* Number of bits set in bitmap */
|
|
exec_cksum; /* Checksum of the execution trace */
|
|
|
|
u64 exec_us, /* Execution time (us) */
|
|
handicap, /* Number of queue cycles behind */
|
|
depth; /* Path depth */
|
|
|
|
u8* trace_mini; /* Trace bytes, if kept */
|
|
u32 tc_ref; /* Trace bytes ref count */
|
|
|
|
struct queue_entry *next, /* Next element, if any */
|
|
*next_100; /* 100 elements ahead */
|
|
|
|
};
|
|
|
|
static struct queue_entry *queue, /* Fuzzing queue (linked list) */
|
|
*queue_cur, /* Current offset within the queue */
|
|
*queue_top, /* Top of the list */
|
|
*q_prev100; /* Previous 100 marker */
|
|
|
|
static struct queue_entry*
|
|
top_rated[MAP_SIZE]; /* Top entries for bitmap bytes */
|
|
|
|
struct extra_data {
|
|
u8* data; /* Dictionary token data */
|
|
u32 len; /* Dictionary token length */
|
|
u32 hit_cnt; /* Use count in the corpus */
|
|
};
|
|
|
|
static struct extra_data* extras; /* Extra tokens to fuzz with */
|
|
static u32 extras_cnt; /* Total number of tokens read */
|
|
|
|
static struct extra_data* a_extras; /* Automatically selected extras */
|
|
static u32 a_extras_cnt; /* Total number of tokens available */
|
|
|
|
static u8* (*post_handler)(u8* buf, u32* len);
|
|
|
|
/* Interesting values, as per config.h */
|
|
|
|
static s8 interesting_8[] = { INTERESTING_8 };
|
|
static s16 interesting_16[] = { INTERESTING_8, INTERESTING_16 };
|
|
static s32 interesting_32[] = { INTERESTING_8, INTERESTING_16, INTERESTING_32 };
|
|
|
|
/* Fuzzing stages */
|
|
|
|
enum {
|
|
/* 00 */ STAGE_FLIP1,
|
|
/* 01 */ STAGE_FLIP2,
|
|
/* 02 */ STAGE_FLIP4,
|
|
/* 03 */ STAGE_FLIP8,
|
|
/* 04 */ STAGE_FLIP16,
|
|
/* 05 */ STAGE_FLIP32,
|
|
/* 06 */ STAGE_ARITH8,
|
|
/* 07 */ STAGE_ARITH16,
|
|
/* 08 */ STAGE_ARITH32,
|
|
/* 09 */ STAGE_INTEREST8,
|
|
/* 10 */ STAGE_INTEREST16,
|
|
/* 11 */ STAGE_INTEREST32,
|
|
/* 12 */ STAGE_EXTRAS_UO,
|
|
/* 13 */ STAGE_EXTRAS_UI,
|
|
/* 14 */ STAGE_EXTRAS_AO,
|
|
/* 15 */ STAGE_HAVOC,
|
|
/* 16 */ STAGE_SPLICE
|
|
};
|
|
|
|
/* Stage value types */
|
|
|
|
enum {
|
|
/* 00 */ STAGE_VAL_NONE,
|
|
/* 01 */ STAGE_VAL_LE,
|
|
/* 02 */ STAGE_VAL_BE
|
|
};
|
|
|
|
/* Execution status fault codes */
|
|
|
|
enum {
|
|
/* 00 */ FAULT_NONE,
|
|
/* 01 */ FAULT_TMOUT,
|
|
/* 02 */ FAULT_CRASH,
|
|
/* 03 */ FAULT_ERROR,
|
|
/* 04 */ FAULT_NOINST,
|
|
/* 05 */ FAULT_NOBITS
|
|
};
|
|
|
|
|
|
/* Get unix time in milliseconds */
|
|
|
|
static u64 get_cur_time(void) {
|
|
|
|
struct timeval tv;
|
|
struct timezone tz;
|
|
|
|
gettimeofday(&tv, &tz);
|
|
|
|
return (tv.tv_sec * 1000ULL) + (tv.tv_usec / 1000);
|
|
|
|
}
|
|
|
|
|
|
/* Get unix time in microseconds */
|
|
|
|
static u64 get_cur_time_us(void) {
|
|
|
|
struct timeval tv;
|
|
struct timezone tz;
|
|
|
|
gettimeofday(&tv, &tz);
|
|
|
|
return (tv.tv_sec * 1000000ULL) + tv.tv_usec;
|
|
|
|
}
|
|
|
|
|
|
/* Generate a random number (from 0 to limit - 1). This may
|
|
have slight bias. */
|
|
|
|
static inline u32 UR(u32 limit) {
|
|
|
|
if (unlikely(!rand_cnt--)) {
|
|
|
|
u32 seed[2];
|
|
|
|
ck_read(dev_urandom_fd, &seed, sizeof(seed), "/dev/urandom");
|
|
|
|
srandom(seed[0]);
|
|
rand_cnt = (RESEED_RNG / 2) + (seed[1] % RESEED_RNG);
|
|
|
|
}
|
|
|
|
return random() % limit;
|
|
|
|
}
|
|
|
|
|
|
/* Shuffle an array of pointers. Might be slightly biased. */
|
|
|
|
static void shuffle_ptrs(void** ptrs, u32 cnt) {
|
|
|
|
u32 i;
|
|
|
|
for (i = 0; i < cnt - 2; i++) {
|
|
|
|
u32 j = i + UR(cnt - i);
|
|
void *s = ptrs[i];
|
|
ptrs[i] = ptrs[j];
|
|
ptrs[j] = s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#ifdef HAVE_AFFINITY
|
|
|
|
/* Build a list of processes bound to specific cores. Returns -1 if nothing
|
|
can be found. Assumes an upper bound of 4k CPUs. */
|
|
|
|
static void bind_to_free_cpu(void) {
|
|
|
|
DIR* d;
|
|
struct dirent* de;
|
|
cpu_set_t c;
|
|
|
|
u8 cpu_used[4096] = { 0 };
|
|
u32 i;
|
|
|
|
if (cpu_core_count < 2) return;
|
|
|
|
if (getenv("AFL_NO_AFFINITY")) {
|
|
|
|
WARNF("Not binding to a CPU core (AFL_NO_AFFINITY set).");
|
|
return;
|
|
|
|
}
|
|
|
|
d = opendir("/proc");
|
|
|
|
if (!d) {
|
|
|
|
WARNF("Unable to access /proc - can't scan for free CPU cores.");
|
|
return;
|
|
|
|
}
|
|
|
|
ACTF("Checking CPU core loadout...");
|
|
|
|
/* Introduce some jitter, in case multiple AFL tasks are doing the same
|
|
thing at the same time... */
|
|
|
|
usleep(R(1000) * 250);
|
|
|
|
/* Scan all /proc/<pid>/status entries, checking for Cpus_allowed_list.
|
|
Flag all processes bound to a specific CPU using cpu_used[]. This will
|
|
fail for some exotic binding setups, but is likely good enough in almost
|
|
all real-world use cases. */
|
|
|
|
while ((de = readdir(d))) {
|
|
|
|
u8* fn;
|
|
FILE* f;
|
|
u8 tmp[MAX_LINE];
|
|
u8 has_vmsize = 0;
|
|
|
|
if (!isdigit(de->d_name[0])) continue;
|
|
|
|
fn = alloc_printf("/proc/%s/status", de->d_name);
|
|
|
|
if (!(f = fopen(fn, "r"))) {
|
|
ck_free(fn);
|
|
continue;
|
|
}
|
|
|
|
while (fgets(tmp, MAX_LINE, f)) {
|
|
|
|
u32 hval;
|
|
|
|
/* Processes without VmSize are probably kernel tasks. */
|
|
|
|
if (!strncmp(tmp, "VmSize:\t", 8)) has_vmsize = 1;
|
|
|
|
if (!strncmp(tmp, "Cpus_allowed_list:\t", 19) &&
|
|
!strchr(tmp, '-') && !strchr(tmp, ',') &&
|
|
sscanf(tmp + 19, "%u", &hval) == 1 && hval < sizeof(cpu_used) &&
|
|
has_vmsize) {
|
|
|
|
cpu_used[hval] = 1;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ck_free(fn);
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
closedir(d);
|
|
if (cpu_to_bind_given) {
|
|
|
|
if (cpu_to_bind >= cpu_core_count)
|
|
FATAL("The CPU core id to bind should be between 0 and %u", cpu_core_count - 1);
|
|
|
|
if (cpu_used[cpu_to_bind])
|
|
FATAL("The CPU core #%u to bind is not free!", cpu_to_bind);
|
|
|
|
i = cpu_to_bind;
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < cpu_core_count; i++) if (!cpu_used[i]) break;
|
|
|
|
}
|
|
|
|
if (i == cpu_core_count) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Uh-oh, looks like all %u CPU cores on your system are allocated to\n"
|
|
" other instances of afl-fuzz (or similar CPU-locked tasks). Starting\n"
|
|
" another fuzzer on this machine is probably a bad plan, but if you are\n"
|
|
" absolutely sure, you can set AFL_NO_AFFINITY and try again.\n",
|
|
cpu_core_count);
|
|
|
|
FATAL("No more free CPU cores");
|
|
|
|
}
|
|
|
|
OKF("Found a free CPU core, binding to #%u.", i);
|
|
|
|
cpu_aff = i;
|
|
|
|
CPU_ZERO(&c);
|
|
CPU_SET(i, &c);
|
|
|
|
if (sched_setaffinity(0, sizeof(c), &c))
|
|
PFATAL("sched_setaffinity failed");
|
|
|
|
}
|
|
|
|
#endif /* HAVE_AFFINITY */
|
|
|
|
#ifndef IGNORE_FINDS
|
|
|
|
/* Helper function to compare buffers; returns first and last differing offset. We
|
|
use this to find reasonable locations for splicing two files. */
|
|
|
|
static void locate_diffs(u8* ptr1, u8* ptr2, u32 len, s32* first, s32* last) {
|
|
|
|
s32 f_loc = -1;
|
|
s32 l_loc = -1;
|
|
u32 pos;
|
|
|
|
for (pos = 0; pos < len; pos++) {
|
|
|
|
if (*(ptr1++) != *(ptr2++)) {
|
|
|
|
if (f_loc == -1) f_loc = pos;
|
|
l_loc = pos;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*first = f_loc;
|
|
*last = l_loc;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif /* !IGNORE_FINDS */
|
|
|
|
|
|
/* Describe integer. Uses 12 cyclic static buffers for return values. The value
|
|
returned should be five characters or less for all the integers we reasonably
|
|
expect to see. */
|
|
|
|
static u8* DI(u64 val) {
|
|
|
|
static u8 tmp[12][16];
|
|
static u8 cur;
|
|
|
|
cur = (cur + 1) % 12;
|
|
|
|
#define CHK_FORMAT(_divisor, _limit_mult, _fmt, _cast) do { \
|
|
if (val < (_divisor) * (_limit_mult)) { \
|
|
sprintf(tmp[cur], _fmt, ((_cast)val) / (_divisor)); \
|
|
return tmp[cur]; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* 0-9999 */
|
|
CHK_FORMAT(1, 10000, "%llu", u64);
|
|
|
|
/* 10.0k - 99.9k */
|
|
CHK_FORMAT(1000, 99.95, "%0.01fk", double);
|
|
|
|
/* 100k - 999k */
|
|
CHK_FORMAT(1000, 1000, "%lluk", u64);
|
|
|
|
/* 1.00M - 9.99M */
|
|
CHK_FORMAT(1000 * 1000, 9.995, "%0.02fM", double);
|
|
|
|
/* 10.0M - 99.9M */
|
|
CHK_FORMAT(1000 * 1000, 99.95, "%0.01fM", double);
|
|
|
|
/* 100M - 999M */
|
|
CHK_FORMAT(1000 * 1000, 1000, "%lluM", u64);
|
|
|
|
/* 1.00G - 9.99G */
|
|
CHK_FORMAT(1000LL * 1000 * 1000, 9.995, "%0.02fG", double);
|
|
|
|
/* 10.0G - 99.9G */
|
|
CHK_FORMAT(1000LL * 1000 * 1000, 99.95, "%0.01fG", double);
|
|
|
|
/* 100G - 999G */
|
|
CHK_FORMAT(1000LL * 1000 * 1000, 1000, "%lluG", u64);
|
|
|
|
/* 1.00T - 9.99G */
|
|
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 9.995, "%0.02fT", double);
|
|
|
|
/* 10.0T - 99.9T */
|
|
CHK_FORMAT(1000LL * 1000 * 1000 * 1000, 99.95, "%0.01fT", double);
|
|
|
|
/* 100T+ */
|
|
strcpy(tmp[cur], "infty");
|
|
return tmp[cur];
|
|
|
|
}
|
|
|
|
|
|
/* Describe float. Similar to the above, except with a single
|
|
static buffer. */
|
|
|
|
static u8* DF(double val) {
|
|
|
|
static u8 tmp[16];
|
|
|
|
if (val < 99.995) {
|
|
sprintf(tmp, "%0.02f", val);
|
|
return tmp;
|
|
}
|
|
|
|
if (val < 999.95) {
|
|
sprintf(tmp, "%0.01f", val);
|
|
return tmp;
|
|
}
|
|
|
|
return DI((u64)val);
|
|
|
|
}
|
|
|
|
|
|
/* Describe integer as memory size. */
|
|
|
|
static u8* DMS(u64 val) {
|
|
|
|
static u8 tmp[12][16];
|
|
static u8 cur;
|
|
|
|
cur = (cur + 1) % 12;
|
|
|
|
/* 0-9999 */
|
|
CHK_FORMAT(1, 10000, "%llu B", u64);
|
|
|
|
/* 10.0k - 99.9k */
|
|
CHK_FORMAT(1024, 99.95, "%0.01f kB", double);
|
|
|
|
/* 100k - 999k */
|
|
CHK_FORMAT(1024, 1000, "%llu kB", u64);
|
|
|
|
/* 1.00M - 9.99M */
|
|
CHK_FORMAT(1024 * 1024, 9.995, "%0.02f MB", double);
|
|
|
|
/* 10.0M - 99.9M */
|
|
CHK_FORMAT(1024 * 1024, 99.95, "%0.01f MB", double);
|
|
|
|
/* 100M - 999M */
|
|
CHK_FORMAT(1024 * 1024, 1000, "%llu MB", u64);
|
|
|
|
/* 1.00G - 9.99G */
|
|
CHK_FORMAT(1024LL * 1024 * 1024, 9.995, "%0.02f GB", double);
|
|
|
|
/* 10.0G - 99.9G */
|
|
CHK_FORMAT(1024LL * 1024 * 1024, 99.95, "%0.01f GB", double);
|
|
|
|
/* 100G - 999G */
|
|
CHK_FORMAT(1024LL * 1024 * 1024, 1000, "%llu GB", u64);
|
|
|
|
/* 1.00T - 9.99G */
|
|
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 9.995, "%0.02f TB", double);
|
|
|
|
/* 10.0T - 99.9T */
|
|
CHK_FORMAT(1024LL * 1024 * 1024 * 1024, 99.95, "%0.01f TB", double);
|
|
|
|
#undef CHK_FORMAT
|
|
|
|
/* 100T+ */
|
|
strcpy(tmp[cur], "infty");
|
|
return tmp[cur];
|
|
|
|
}
|
|
|
|
|
|
/* Describe time delta. Returns one static buffer, 34 chars of less. */
|
|
|
|
static u8* DTD(u64 cur_ms, u64 event_ms) {
|
|
|
|
static u8 tmp[64];
|
|
u64 delta;
|
|
s32 t_d, t_h, t_m, t_s;
|
|
|
|
if (!event_ms) return "none seen yet";
|
|
|
|
delta = cur_ms - event_ms;
|
|
|
|
t_d = delta / 1000 / 60 / 60 / 24;
|
|
t_h = (delta / 1000 / 60 / 60) % 24;
|
|
t_m = (delta / 1000 / 60) % 60;
|
|
t_s = (delta / 1000) % 60;
|
|
|
|
sprintf(tmp, "%s days, %u hrs, %u min, %u sec", DI(t_d), t_h, t_m, t_s);
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
|
/* Mark deterministic checks as done for a particular queue entry. We use the
|
|
.state file to avoid repeating deterministic fuzzing when resuming aborted
|
|
scans. */
|
|
|
|
static void mark_as_det_done(struct queue_entry* q) {
|
|
|
|
u8* fn = strrchr(q->fname, '/');
|
|
s32 fd;
|
|
|
|
fn = alloc_printf("%s/queue/.state/deterministic_done/%s", out_dir, fn + 1);
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
close(fd);
|
|
|
|
ck_free(fn);
|
|
|
|
q->passed_det = 1;
|
|
|
|
}
|
|
|
|
|
|
/* Mark as variable. Create symlinks if possible to make it easier to examine
|
|
the files. */
|
|
|
|
static void mark_as_variable(struct queue_entry* q) {
|
|
|
|
u8 *fn = strrchr(q->fname, '/') + 1, *ldest;
|
|
|
|
ldest = alloc_printf("../../%s", fn);
|
|
fn = alloc_printf("%s/queue/.state/variable_behavior/%s", out_dir, fn);
|
|
|
|
if (symlink(ldest, fn)) {
|
|
|
|
s32 fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
close(fd);
|
|
|
|
}
|
|
|
|
ck_free(ldest);
|
|
ck_free(fn);
|
|
|
|
q->var_behavior = 1;
|
|
|
|
}
|
|
|
|
|
|
/* Mark / unmark as redundant (edge-only). This is not used for restoring state,
|
|
but may be useful for post-processing datasets. */
|
|
|
|
static void mark_as_redundant(struct queue_entry* q, u8 state) {
|
|
|
|
u8* fn;
|
|
s32 fd;
|
|
|
|
if (state == q->fs_redundant) return;
|
|
|
|
q->fs_redundant = state;
|
|
|
|
fn = strrchr(q->fname, '/');
|
|
fn = alloc_printf("%s/queue/.state/redundant_edges/%s", out_dir, fn + 1);
|
|
|
|
if (state) {
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
close(fd);
|
|
|
|
} else {
|
|
|
|
if (unlink(fn)) PFATAL("Unable to remove '%s'", fn);
|
|
|
|
}
|
|
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
|
|
/* Append new test case to the queue. */
|
|
|
|
static void add_to_queue(u8* fname, u32 len, u8 passed_det) {
|
|
|
|
struct queue_entry* q = ck_alloc(sizeof(struct queue_entry));
|
|
|
|
q->fname = fname;
|
|
q->len = len;
|
|
q->depth = cur_depth + 1;
|
|
q->passed_det = passed_det;
|
|
|
|
if (q->depth > max_depth) max_depth = q->depth;
|
|
|
|
if (queue_top) {
|
|
|
|
queue_top->next = q;
|
|
queue_top = q;
|
|
|
|
} else q_prev100 = queue = queue_top = q;
|
|
|
|
queued_paths++;
|
|
pending_not_fuzzed++;
|
|
|
|
cycles_wo_finds = 0;
|
|
|
|
/* Set next_100 pointer for every 100th element (index 0, 100, etc) to allow faster iteration. */
|
|
if ((queued_paths - 1) % 100 == 0 && queued_paths > 1) {
|
|
|
|
q_prev100->next_100 = q;
|
|
q_prev100 = q;
|
|
|
|
}
|
|
|
|
last_path_time = get_cur_time();
|
|
|
|
}
|
|
|
|
|
|
/* Destroy the entire queue. */
|
|
|
|
EXP_ST void destroy_queue(void) {
|
|
|
|
struct queue_entry *q = queue, *n;
|
|
|
|
while (q) {
|
|
|
|
n = q->next;
|
|
ck_free(q->fname);
|
|
ck_free(q->trace_mini);
|
|
ck_free(q);
|
|
q = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Write bitmap to file. The bitmap is useful mostly for the secret
|
|
-B option, to focus a separate fuzzing session on a particular
|
|
interesting input without rediscovering all the others. */
|
|
|
|
EXP_ST void write_bitmap(void) {
|
|
|
|
u8* fname;
|
|
s32 fd;
|
|
|
|
if (!bitmap_changed) return;
|
|
bitmap_changed = 0;
|
|
|
|
fname = alloc_printf("%s/fuzz_bitmap", out_dir);
|
|
fd = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
|
|
|
ck_write(fd, virgin_bits, MAP_SIZE, fname);
|
|
|
|
close(fd);
|
|
ck_free(fname);
|
|
|
|
}
|
|
|
|
|
|
/* Read bitmap from file. This is for the -B option again. */
|
|
|
|
EXP_ST void read_bitmap(u8* fname) {
|
|
|
|
s32 fd = open(fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", fname);
|
|
|
|
ck_read(fd, virgin_bits, MAP_SIZE, fname);
|
|
|
|
close(fd);
|
|
|
|
}
|
|
|
|
|
|
/* Check if the current execution path brings anything new to the table.
|
|
Update virgin bits to reflect the finds. Returns 1 if the only change is
|
|
the hit-count for a particular tuple; 2 if there are new tuples seen.
|
|
Updates the map, so subsequent calls will always return 0.
|
|
|
|
This function is called after every exec() on a fairly large buffer, so
|
|
it needs to be fast. We do this in 32-bit and 64-bit flavors. */
|
|
|
|
static inline u8 has_new_bits(u8* virgin_map) {
|
|
|
|
#ifdef WORD_SIZE_64
|
|
|
|
u64* current = (u64*)trace_bits;
|
|
u64* virgin = (u64*)virgin_map;
|
|
|
|
u32 i = (MAP_SIZE >> 3);
|
|
|
|
#else
|
|
|
|
u32* current = (u32*)trace_bits;
|
|
u32* virgin = (u32*)virgin_map;
|
|
|
|
u32 i = (MAP_SIZE >> 2);
|
|
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
u8 ret = 0;
|
|
|
|
while (i--) {
|
|
|
|
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
|
|
that have not been already cleared from the virgin map - since this will
|
|
almost always be the case. */
|
|
|
|
if (unlikely(*current) && unlikely(*current & *virgin)) {
|
|
|
|
if (likely(ret < 2)) {
|
|
|
|
u8* cur = (u8*)current;
|
|
u8* vir = (u8*)virgin;
|
|
|
|
/* Looks like we have not found any new bytes yet; see if any non-zero
|
|
bytes in current[] are pristine in virgin[]. */
|
|
|
|
#ifdef WORD_SIZE_64
|
|
|
|
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
|
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
|
|
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
|
|
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) ret = 2;
|
|
else ret = 1;
|
|
|
|
#else
|
|
|
|
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
|
|
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff)) ret = 2;
|
|
else ret = 1;
|
|
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
}
|
|
|
|
*virgin &= ~*current;
|
|
|
|
}
|
|
|
|
current++;
|
|
virgin++;
|
|
|
|
}
|
|
|
|
if (ret && virgin_map == virgin_bits) bitmap_changed = 1;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
/* Count the number of bits set in the provided bitmap. Used for the status
|
|
screen several times every second, does not have to be fast. */
|
|
|
|
static u32 count_bits(u8* mem) {
|
|
|
|
u32* ptr = (u32*)mem;
|
|
u32 i = (MAP_SIZE >> 2);
|
|
u32 ret = 0;
|
|
|
|
while (i--) {
|
|
|
|
u32 v = *(ptr++);
|
|
|
|
/* This gets called on the inverse, virgin bitmap; optimize for sparse
|
|
data. */
|
|
|
|
if (v == 0xffffffff) {
|
|
ret += 32;
|
|
continue;
|
|
}
|
|
|
|
v -= ((v >> 1) & 0x55555555);
|
|
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
|
|
ret += (((v + (v >> 4)) & 0xF0F0F0F) * 0x01010101) >> 24;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
#define FF(_b) (0xff << ((_b) << 3))
|
|
|
|
/* Count the number of bytes set in the bitmap. Called fairly sporadically,
|
|
mostly to update the status screen or calibrate and examine confirmed
|
|
new paths. */
|
|
|
|
static u32 count_bytes(u8* mem) {
|
|
|
|
u32* ptr = (u32*)mem;
|
|
u32 i = (MAP_SIZE >> 2);
|
|
u32 ret = 0;
|
|
|
|
while (i--) {
|
|
|
|
u32 v = *(ptr++);
|
|
|
|
if (!v) continue;
|
|
if (v & FF(0)) ret++;
|
|
if (v & FF(1)) ret++;
|
|
if (v & FF(2)) ret++;
|
|
if (v & FF(3)) ret++;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
/* Count the number of non-255 bytes set in the bitmap. Used strictly for the
|
|
status screen, several calls per second or so. */
|
|
|
|
static u32 count_non_255_bytes(u8* mem) {
|
|
|
|
u32* ptr = (u32*)mem;
|
|
u32 i = (MAP_SIZE >> 2);
|
|
u32 ret = 0;
|
|
|
|
while (i--) {
|
|
|
|
u32 v = *(ptr++);
|
|
|
|
/* This is called on the virgin bitmap, so optimize for the most likely
|
|
case. */
|
|
|
|
if (v == 0xffffffff) continue;
|
|
if ((v & FF(0)) != FF(0)) ret++;
|
|
if ((v & FF(1)) != FF(1)) ret++;
|
|
if ((v & FF(2)) != FF(2)) ret++;
|
|
if ((v & FF(3)) != FF(3)) ret++;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
/* Destructively simplify trace by eliminating hit count information
|
|
and replacing it with 0x80 or 0x01 depending on whether the tuple
|
|
is hit or not. Called on every new crash or timeout, should be
|
|
reasonably fast. */
|
|
|
|
static const u8 simplify_lookup[256] = {
|
|
|
|
[0] = 1,
|
|
[1 ... 255] = 128
|
|
|
|
};
|
|
|
|
#ifdef WORD_SIZE_64
|
|
|
|
static void simplify_trace(u64* mem) {
|
|
|
|
u32 i = MAP_SIZE >> 3;
|
|
|
|
while (i--) {
|
|
|
|
/* Optimize for sparse bitmaps. */
|
|
|
|
if (unlikely(*mem)) {
|
|
|
|
u8* mem8 = (u8*)mem;
|
|
|
|
mem8[0] = simplify_lookup[mem8[0]];
|
|
mem8[1] = simplify_lookup[mem8[1]];
|
|
mem8[2] = simplify_lookup[mem8[2]];
|
|
mem8[3] = simplify_lookup[mem8[3]];
|
|
mem8[4] = simplify_lookup[mem8[4]];
|
|
mem8[5] = simplify_lookup[mem8[5]];
|
|
mem8[6] = simplify_lookup[mem8[6]];
|
|
mem8[7] = simplify_lookup[mem8[7]];
|
|
|
|
} else *mem = 0x0101010101010101ULL;
|
|
|
|
mem++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void simplify_trace(u32* mem) {
|
|
|
|
u32 i = MAP_SIZE >> 2;
|
|
|
|
while (i--) {
|
|
|
|
/* Optimize for sparse bitmaps. */
|
|
|
|
if (unlikely(*mem)) {
|
|
|
|
u8* mem8 = (u8*)mem;
|
|
|
|
mem8[0] = simplify_lookup[mem8[0]];
|
|
mem8[1] = simplify_lookup[mem8[1]];
|
|
mem8[2] = simplify_lookup[mem8[2]];
|
|
mem8[3] = simplify_lookup[mem8[3]];
|
|
|
|
} else *mem = 0x01010101;
|
|
|
|
mem++;
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
|
|
/* Destructively classify execution counts in a trace. This is used as a
|
|
preprocessing step for any newly acquired traces. Called on every exec,
|
|
must be fast. */
|
|
|
|
static const u8 count_class_lookup8[256] = {
|
|
|
|
[0] = 0,
|
|
[1] = 1,
|
|
[2] = 2,
|
|
[3] = 4,
|
|
[4 ... 7] = 8,
|
|
[8 ... 15] = 16,
|
|
[16 ... 31] = 32,
|
|
[32 ... 127] = 64,
|
|
[128 ... 255] = 128
|
|
|
|
};
|
|
|
|
static u16 count_class_lookup16[65536];
|
|
|
|
|
|
EXP_ST void init_count_class16(void) {
|
|
|
|
u32 b1, b2;
|
|
|
|
for (b1 = 0; b1 < 256; b1++)
|
|
for (b2 = 0; b2 < 256; b2++)
|
|
count_class_lookup16[(b1 << 8) + b2] =
|
|
(count_class_lookup8[b1] << 8) |
|
|
count_class_lookup8[b2];
|
|
|
|
}
|
|
|
|
|
|
#ifdef WORD_SIZE_64
|
|
|
|
static inline void classify_counts(u64* mem) {
|
|
|
|
u32 i = MAP_SIZE >> 3;
|
|
|
|
while (i--) {
|
|
|
|
/* Optimize for sparse bitmaps. */
|
|
|
|
if (unlikely(*mem)) {
|
|
|
|
u16* mem16 = (u16*)mem;
|
|
|
|
mem16[0] = count_class_lookup16[mem16[0]];
|
|
mem16[1] = count_class_lookup16[mem16[1]];
|
|
mem16[2] = count_class_lookup16[mem16[2]];
|
|
mem16[3] = count_class_lookup16[mem16[3]];
|
|
|
|
}
|
|
|
|
mem++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void classify_counts(u32* mem) {
|
|
|
|
u32 i = MAP_SIZE >> 2;
|
|
|
|
while (i--) {
|
|
|
|
/* Optimize for sparse bitmaps. */
|
|
|
|
if (unlikely(*mem)) {
|
|
|
|
u16* mem16 = (u16*)mem;
|
|
|
|
mem16[0] = count_class_lookup16[mem16[0]];
|
|
mem16[1] = count_class_lookup16[mem16[1]];
|
|
|
|
}
|
|
|
|
mem++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
|
|
/* Get rid of shared memory (atexit handler). */
|
|
|
|
static void remove_shm(void) {
|
|
|
|
shmctl(shm_id, IPC_RMID, NULL);
|
|
|
|
}
|
|
|
|
|
|
/* Compact trace bytes into a smaller bitmap. We effectively just drop the
|
|
count information here. This is called only sporadically, for some
|
|
new paths. */
|
|
|
|
static void minimize_bits(u8* dst, u8* src) {
|
|
|
|
u32 i = 0;
|
|
|
|
while (i < MAP_SIZE) {
|
|
|
|
if (*(src++)) dst[i >> 3] |= 1 << (i & 7);
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* When we bump into a new path, we call this to see if the path appears
|
|
more "favorable" than any of the existing ones. The purpose of the
|
|
"favorables" is to have a minimal set of paths that trigger all the bits
|
|
seen in the bitmap so far, and focus on fuzzing them at the expense of
|
|
the rest.
|
|
|
|
The first step of the process is to maintain a list of top_rated[] entries
|
|
for every byte in the bitmap. We win that slot if there is no previous
|
|
contender, or if the contender has a more favorable speed x size factor. */
|
|
|
|
static void update_bitmap_score(struct queue_entry* q) {
|
|
|
|
u32 i;
|
|
u64 fav_factor = q->exec_us * q->len;
|
|
|
|
/* For every byte set in trace_bits[], see if there is a previous winner,
|
|
and how it compares to us. */
|
|
|
|
for (i = 0; i < MAP_SIZE; i++)
|
|
|
|
if (trace_bits[i]) {
|
|
|
|
if (top_rated[i]) {
|
|
|
|
/* Faster-executing or smaller test cases are favored. */
|
|
|
|
if (fav_factor > top_rated[i]->exec_us * top_rated[i]->len) continue;
|
|
|
|
/* Looks like we're going to win. Decrease ref count for the
|
|
previous winner, discard its trace_bits[] if necessary. */
|
|
|
|
if (!--top_rated[i]->tc_ref) {
|
|
ck_free(top_rated[i]->trace_mini);
|
|
top_rated[i]->trace_mini = 0;
|
|
}
|
|
|
|
}
|
|
|
|
/* Insert ourselves as the new winner. */
|
|
|
|
top_rated[i] = q;
|
|
q->tc_ref++;
|
|
|
|
if (!q->trace_mini) {
|
|
q->trace_mini = ck_alloc(MAP_SIZE >> 3);
|
|
minimize_bits(q->trace_mini, trace_bits);
|
|
}
|
|
|
|
score_changed = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* The second part of the mechanism discussed above is a routine that
|
|
goes over top_rated[] entries, and then sequentially grabs winners for
|
|
previously-unseen bytes (temp_v) and marks them as favored, at least
|
|
until the next run. The favored entries are given more air time during
|
|
all fuzzing steps. */
|
|
|
|
static void cull_queue(void) {
|
|
|
|
struct queue_entry* q;
|
|
static u8 temp_v[MAP_SIZE >> 3];
|
|
u32 i;
|
|
|
|
if (dumb_mode || !score_changed) return;
|
|
|
|
score_changed = 0;
|
|
|
|
memset(temp_v, 255, MAP_SIZE >> 3);
|
|
|
|
queued_favored = 0;
|
|
pending_favored = 0;
|
|
|
|
q = queue;
|
|
|
|
while (q) {
|
|
q->favored = 0;
|
|
q = q->next;
|
|
}
|
|
|
|
/* Let's see if anything in the bitmap isn't captured in temp_v.
|
|
If yes, and if it has a top_rated[] contender, let's use it. */
|
|
|
|
for (i = 0; i < MAP_SIZE; i++)
|
|
if (top_rated[i] && (temp_v[i >> 3] & (1 << (i & 7)))) {
|
|
|
|
u32 j = MAP_SIZE >> 3;
|
|
|
|
/* Remove all bits belonging to the current entry from temp_v. */
|
|
|
|
while (j--)
|
|
if (top_rated[i]->trace_mini[j])
|
|
temp_v[j] &= ~top_rated[i]->trace_mini[j];
|
|
|
|
top_rated[i]->favored = 1;
|
|
queued_favored++;
|
|
|
|
if (!top_rated[i]->was_fuzzed) pending_favored++;
|
|
|
|
}
|
|
|
|
q = queue;
|
|
|
|
while (q) {
|
|
mark_as_redundant(q, !q->favored);
|
|
q = q->next;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Configure shared memory and virgin_bits. This is called at startup. */
|
|
|
|
EXP_ST void setup_shm(void) {
|
|
|
|
u8* shm_str;
|
|
|
|
if (!in_bitmap) memset(virgin_bits, 255, MAP_SIZE);
|
|
|
|
memset(virgin_tmout, 255, MAP_SIZE);
|
|
memset(virgin_crash, 255, MAP_SIZE);
|
|
|
|
shm_id = shmget(IPC_PRIVATE, MAP_SIZE, IPC_CREAT | IPC_EXCL | 0600);
|
|
|
|
if (shm_id < 0) PFATAL("shmget() failed");
|
|
|
|
atexit(remove_shm);
|
|
|
|
shm_str = alloc_printf("%d", shm_id);
|
|
|
|
/* If somebody is asking us to fuzz instrumented binaries in dumb mode,
|
|
we don't want them to detect instrumentation, since we won't be sending
|
|
fork server commands. This should be replaced with better auto-detection
|
|
later on, perhaps? */
|
|
|
|
if (!dumb_mode) setenv(SHM_ENV_VAR, shm_str, 1);
|
|
|
|
ck_free(shm_str);
|
|
|
|
trace_bits = shmat(shm_id, NULL, 0);
|
|
|
|
if (trace_bits == (void *)-1) PFATAL("shmat() failed");
|
|
|
|
}
|
|
|
|
|
|
/* Load postprocessor, if available. */
|
|
|
|
static void setup_post(void) {
|
|
|
|
void* dh;
|
|
u8* fn = getenv("AFL_POST_LIBRARY");
|
|
u32 tlen = 6;
|
|
|
|
if (!fn) return;
|
|
|
|
ACTF("Loading postprocessor from '%s'...", fn);
|
|
|
|
dh = dlopen(fn, RTLD_NOW);
|
|
if (!dh) FATAL("%s", dlerror());
|
|
|
|
post_handler = dlsym(dh, "afl_postprocess");
|
|
if (!post_handler) FATAL("Symbol 'afl_postprocess' not found.");
|
|
|
|
/* Do a quick test. It's better to segfault now than later =) */
|
|
|
|
post_handler("hello", &tlen);
|
|
|
|
OKF("Postprocessor installed successfully.");
|
|
|
|
}
|
|
|
|
|
|
/* Read all testcases from the input directory, then queue them for testing.
|
|
Called at startup. */
|
|
|
|
static void read_testcases(void) {
|
|
|
|
struct dirent **nl;
|
|
s32 nl_cnt;
|
|
u32 i;
|
|
u8* fn;
|
|
|
|
/* Auto-detect non-in-place resumption attempts. */
|
|
|
|
fn = alloc_printf("%s/queue", in_dir);
|
|
if (!access(fn, F_OK)) in_dir = fn; else ck_free(fn);
|
|
|
|
ACTF("Scanning '%s'...", in_dir);
|
|
|
|
/* We use scandir() + alphasort() rather than readdir() because otherwise,
|
|
the ordering of test cases would vary somewhat randomly and would be
|
|
difficult to control. */
|
|
|
|
nl_cnt = scandir(in_dir, &nl, NULL, alphasort);
|
|
|
|
if (nl_cnt < 0) {
|
|
|
|
if (errno == ENOENT || errno == ENOTDIR)
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"The input directory does not seem to be valid - try again. The fuzzer needs\n"
|
|
" one or more test case to start with - ideally, a small file under 1 kB\n"
|
|
" or so. The cases must be stored as regular files directly in the input\n"
|
|
" directory.\n");
|
|
|
|
PFATAL("Unable to open '%s'", in_dir);
|
|
|
|
}
|
|
|
|
if (shuffle_queue && nl_cnt > 1) {
|
|
|
|
ACTF("Shuffling queue...");
|
|
shuffle_ptrs((void**)nl, nl_cnt);
|
|
|
|
}
|
|
|
|
for (i = 0; i < nl_cnt; i++) {
|
|
|
|
struct stat st;
|
|
|
|
u8* fn = alloc_printf("%s/%s", in_dir, nl[i]->d_name);
|
|
u8* dfn = alloc_printf("%s/.state/deterministic_done/%s", in_dir, nl[i]->d_name);
|
|
|
|
u8 passed_det = 0;
|
|
|
|
free(nl[i]); /* not tracked */
|
|
|
|
if (lstat(fn, &st) || access(fn, R_OK))
|
|
PFATAL("Unable to access '%s'", fn);
|
|
|
|
/* This also takes care of . and .. */
|
|
|
|
if (!S_ISREG(st.st_mode) || !st.st_size || strstr(fn, "/README.testcases")) {
|
|
|
|
ck_free(fn);
|
|
ck_free(dfn);
|
|
continue;
|
|
|
|
}
|
|
|
|
if (st.st_size > MAX_FILE)
|
|
FATAL("Test case '%s' is too big (%s, limit is %s)", fn,
|
|
DMS(st.st_size), DMS(MAX_FILE));
|
|
|
|
/* Check for metadata that indicates that deterministic fuzzing
|
|
is complete for this entry. We don't want to repeat deterministic
|
|
fuzzing when resuming aborted scans, because it would be pointless
|
|
and probably very time-consuming. */
|
|
|
|
if (!access(dfn, F_OK)) passed_det = 1;
|
|
ck_free(dfn);
|
|
|
|
add_to_queue(fn, st.st_size, passed_det);
|
|
|
|
}
|
|
|
|
free(nl); /* not tracked */
|
|
|
|
if (!queued_paths) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Looks like there are no valid test cases in the input directory! The fuzzer\n"
|
|
" needs one or more test case to start with - ideally, a small file under\n"
|
|
" 1 kB or so. The cases must be stored as regular files directly in the\n"
|
|
" input directory.\n");
|
|
|
|
FATAL("No usable test cases in '%s'", in_dir);
|
|
|
|
}
|
|
|
|
last_path_time = 0;
|
|
queued_at_start = queued_paths;
|
|
|
|
}
|
|
|
|
|
|
/* Helper function for load_extras. */
|
|
|
|
static int compare_extras_len(const void* p1, const void* p2) {
|
|
struct extra_data *e1 = (struct extra_data*)p1,
|
|
*e2 = (struct extra_data*)p2;
|
|
|
|
return e1->len - e2->len;
|
|
}
|
|
|
|
static int compare_extras_use_d(const void* p1, const void* p2) {
|
|
struct extra_data *e1 = (struct extra_data*)p1,
|
|
*e2 = (struct extra_data*)p2;
|
|
|
|
return e2->hit_cnt - e1->hit_cnt;
|
|
}
|
|
|
|
|
|
/* Read extras from a file, sort by size. */
|
|
|
|
static void load_extras_file(u8* fname, u32* min_len, u32* max_len,
|
|
u32 dict_level) {
|
|
|
|
FILE* f;
|
|
u8 buf[MAX_LINE];
|
|
u8 *lptr;
|
|
u32 cur_line = 0;
|
|
|
|
f = fopen(fname, "r");
|
|
|
|
if (!f) PFATAL("Unable to open '%s'", fname);
|
|
|
|
while ((lptr = fgets(buf, MAX_LINE, f))) {
|
|
|
|
u8 *rptr, *wptr;
|
|
u32 klen = 0;
|
|
|
|
cur_line++;
|
|
|
|
/* Trim on left and right. */
|
|
|
|
while (isspace(*lptr)) lptr++;
|
|
|
|
rptr = lptr + strlen(lptr) - 1;
|
|
while (rptr >= lptr && isspace(*rptr)) rptr--;
|
|
rptr++;
|
|
*rptr = 0;
|
|
|
|
/* Skip empty lines and comments. */
|
|
|
|
if (!*lptr || *lptr == '#') continue;
|
|
|
|
/* All other lines must end with '"', which we can consume. */
|
|
|
|
rptr--;
|
|
|
|
if (rptr < lptr || *rptr != '"')
|
|
FATAL("Malformed name=\"value\" pair in line %u.", cur_line);
|
|
|
|
*rptr = 0;
|
|
|
|
/* Skip alphanumerics and dashes (label). */
|
|
|
|
while (isalnum(*lptr) || *lptr == '_') lptr++;
|
|
|
|
/* If @number follows, parse that. */
|
|
|
|
if (*lptr == '@') {
|
|
|
|
lptr++;
|
|
if (atoi(lptr) > dict_level) continue;
|
|
while (isdigit(*lptr)) lptr++;
|
|
|
|
}
|
|
|
|
/* Skip whitespace and = signs. */
|
|
|
|
while (isspace(*lptr) || *lptr == '=') lptr++;
|
|
|
|
/* Consume opening '"'. */
|
|
|
|
if (*lptr != '"')
|
|
FATAL("Malformed name=\"keyword\" pair in line %u.", cur_line);
|
|
|
|
lptr++;
|
|
|
|
if (!*lptr) FATAL("Empty keyword in line %u.", cur_line);
|
|
|
|
/* Okay, let's allocate memory and copy data between "...", handling
|
|
\xNN escaping, \\, and \". */
|
|
|
|
extras = ck_realloc_block(extras, (extras_cnt + 1) *
|
|
sizeof(struct extra_data));
|
|
|
|
wptr = extras[extras_cnt].data = ck_alloc(rptr - lptr);
|
|
|
|
while (*lptr) {
|
|
|
|
char* hexdigits = "0123456789abcdef";
|
|
|
|
switch (*lptr) {
|
|
|
|
case 1 ... 31:
|
|
case 128 ... 255:
|
|
FATAL("Non-printable characters in line %u.", cur_line);
|
|
|
|
case '\\':
|
|
|
|
lptr++;
|
|
|
|
if (*lptr == '\\' || *lptr == '"') {
|
|
*(wptr++) = *(lptr++);
|
|
klen++;
|
|
break;
|
|
}
|
|
|
|
if (*lptr != 'x' || !isxdigit(lptr[1]) || !isxdigit(lptr[2]))
|
|
FATAL("Invalid escaping (not \\xNN) in line %u.", cur_line);
|
|
|
|
*(wptr++) =
|
|
((strchr(hexdigits, tolower(lptr[1])) - hexdigits) << 4) |
|
|
(strchr(hexdigits, tolower(lptr[2])) - hexdigits);
|
|
|
|
lptr += 3;
|
|
klen++;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
*(wptr++) = *(lptr++);
|
|
klen++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
extras[extras_cnt].len = klen;
|
|
|
|
if (extras[extras_cnt].len > MAX_DICT_FILE)
|
|
FATAL("Keyword too big in line %u (%s, limit is %s)", cur_line,
|
|
DMS(klen), DMS(MAX_DICT_FILE));
|
|
|
|
if (*min_len > klen) *min_len = klen;
|
|
if (*max_len < klen) *max_len = klen;
|
|
|
|
extras_cnt++;
|
|
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
|
|
/* Read extras from the extras directory and sort them by size. */
|
|
|
|
static void load_extras(u8* dir) {
|
|
|
|
DIR* d;
|
|
struct dirent* de;
|
|
u32 min_len = MAX_DICT_FILE, max_len = 0, dict_level = 0;
|
|
u8* x;
|
|
|
|
/* If the name ends with @, extract level and continue. */
|
|
|
|
if ((x = strchr(dir, '@'))) {
|
|
|
|
*x = 0;
|
|
dict_level = atoi(x + 1);
|
|
|
|
}
|
|
|
|
ACTF("Loading extra dictionary from '%s' (level %u)...", dir, dict_level);
|
|
|
|
d = opendir(dir);
|
|
|
|
if (!d) {
|
|
|
|
if (errno == ENOTDIR) {
|
|
load_extras_file(dir, &min_len, &max_len, dict_level);
|
|
goto check_and_sort;
|
|
}
|
|
|
|
PFATAL("Unable to open '%s'", dir);
|
|
|
|
}
|
|
|
|
if (x) FATAL("Dictionary levels not supported for directories.");
|
|
|
|
while ((de = readdir(d))) {
|
|
|
|
struct stat st;
|
|
u8* fn = alloc_printf("%s/%s", dir, de->d_name);
|
|
s32 fd;
|
|
|
|
if (lstat(fn, &st) || access(fn, R_OK))
|
|
PFATAL("Unable to access '%s'", fn);
|
|
|
|
/* This also takes care of . and .. */
|
|
if (!S_ISREG(st.st_mode) || !st.st_size) {
|
|
|
|
ck_free(fn);
|
|
continue;
|
|
|
|
}
|
|
|
|
if (st.st_size > MAX_DICT_FILE)
|
|
FATAL("Extra '%s' is too big (%s, limit is %s)", fn,
|
|
DMS(st.st_size), DMS(MAX_DICT_FILE));
|
|
|
|
if (min_len > st.st_size) min_len = st.st_size;
|
|
if (max_len < st.st_size) max_len = st.st_size;
|
|
|
|
extras = ck_realloc_block(extras, (extras_cnt + 1) *
|
|
sizeof(struct extra_data));
|
|
|
|
extras[extras_cnt].data = ck_alloc(st.st_size);
|
|
extras[extras_cnt].len = st.st_size;
|
|
|
|
fd = open(fn, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", fn);
|
|
|
|
ck_read(fd, extras[extras_cnt].data, st.st_size, fn);
|
|
|
|
close(fd);
|
|
ck_free(fn);
|
|
|
|
extras_cnt++;
|
|
|
|
}
|
|
|
|
closedir(d);
|
|
|
|
check_and_sort:
|
|
|
|
if (!extras_cnt) FATAL("No usable files in '%s'", dir);
|
|
|
|
qsort(extras, extras_cnt, sizeof(struct extra_data), compare_extras_len);
|
|
|
|
OKF("Loaded %u extra tokens, size range %s to %s.", extras_cnt,
|
|
DMS(min_len), DMS(max_len));
|
|
|
|
if (max_len > 32)
|
|
WARNF("Some tokens are relatively large (%s) - consider trimming.",
|
|
DMS(max_len));
|
|
|
|
if (extras_cnt > MAX_DET_EXTRAS)
|
|
WARNF("More than %u tokens - will use them probabilistically.",
|
|
MAX_DET_EXTRAS);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Helper function for maybe_add_auto() */
|
|
|
|
static inline u8 memcmp_nocase(u8* m1, u8* m2, u32 len) {
|
|
|
|
while (len--) if (tolower(*(m1++)) ^ tolower(*(m2++))) return 1;
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Maybe add automatic extra. */
|
|
|
|
static void maybe_add_auto(u8* mem, u32 len) {
|
|
|
|
u32 i;
|
|
|
|
/* Allow users to specify that they don't want auto dictionaries. */
|
|
|
|
if (!MAX_AUTO_EXTRAS || !USE_AUTO_EXTRAS) return;
|
|
|
|
/* Skip runs of identical bytes. */
|
|
|
|
for (i = 1; i < len; i++)
|
|
if (mem[0] ^ mem[i]) break;
|
|
|
|
if (i == len) return;
|
|
|
|
/* Reject builtin interesting values. */
|
|
|
|
if (len == 2) {
|
|
|
|
i = sizeof(interesting_16) >> 1;
|
|
|
|
while (i--)
|
|
if (*((u16*)mem) == interesting_16[i] ||
|
|
*((u16*)mem) == SWAP16(interesting_16[i])) return;
|
|
|
|
}
|
|
|
|
if (len == 4) {
|
|
|
|
i = sizeof(interesting_32) >> 2;
|
|
|
|
while (i--)
|
|
if (*((u32*)mem) == interesting_32[i] ||
|
|
*((u32*)mem) == SWAP32(interesting_32[i])) return;
|
|
|
|
}
|
|
|
|
/* Reject anything that matches existing extras. Do a case-insensitive
|
|
match. We optimize by exploiting the fact that extras[] are sorted
|
|
by size. */
|
|
|
|
for (i = 0; i < extras_cnt; i++)
|
|
if (extras[i].len >= len) break;
|
|
|
|
for (; i < extras_cnt && extras[i].len == len; i++)
|
|
if (!memcmp_nocase(extras[i].data, mem, len)) return;
|
|
|
|
/* Last but not least, check a_extras[] for matches. There are no
|
|
guarantees of a particular sort order. */
|
|
|
|
auto_changed = 1;
|
|
|
|
for (i = 0; i < a_extras_cnt; i++) {
|
|
|
|
if (a_extras[i].len == len && !memcmp_nocase(a_extras[i].data, mem, len)) {
|
|
|
|
a_extras[i].hit_cnt++;
|
|
goto sort_a_extras;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* At this point, looks like we're dealing with a new entry. So, let's
|
|
append it if we have room. Otherwise, let's randomly evict some other
|
|
entry from the bottom half of the list. */
|
|
|
|
if (a_extras_cnt < MAX_AUTO_EXTRAS) {
|
|
|
|
a_extras = ck_realloc_block(a_extras, (a_extras_cnt + 1) *
|
|
sizeof(struct extra_data));
|
|
|
|
a_extras[a_extras_cnt].data = ck_memdup(mem, len);
|
|
a_extras[a_extras_cnt].len = len;
|
|
a_extras_cnt++;
|
|
|
|
} else {
|
|
|
|
i = MAX_AUTO_EXTRAS / 2 +
|
|
UR((MAX_AUTO_EXTRAS + 1) / 2);
|
|
|
|
ck_free(a_extras[i].data);
|
|
|
|
a_extras[i].data = ck_memdup(mem, len);
|
|
a_extras[i].len = len;
|
|
a_extras[i].hit_cnt = 0;
|
|
|
|
}
|
|
|
|
sort_a_extras:
|
|
|
|
/* First, sort all auto extras by use count, descending order. */
|
|
|
|
qsort(a_extras, a_extras_cnt, sizeof(struct extra_data),
|
|
compare_extras_use_d);
|
|
|
|
/* Then, sort the top USE_AUTO_EXTRAS entries by size. */
|
|
|
|
qsort(a_extras, MIN(USE_AUTO_EXTRAS, a_extras_cnt),
|
|
sizeof(struct extra_data), compare_extras_len);
|
|
|
|
}
|
|
|
|
|
|
/* Save automatically generated extras. */
|
|
|
|
static void save_auto(void) {
|
|
|
|
u32 i;
|
|
|
|
if (!auto_changed) return;
|
|
auto_changed = 0;
|
|
|
|
for (i = 0; i < MIN(USE_AUTO_EXTRAS, a_extras_cnt); i++) {
|
|
|
|
u8* fn = alloc_printf("%s/queue/.state/auto_extras/auto_%06u", out_dir, i);
|
|
s32 fd;
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_TRUNC, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
|
|
ck_write(fd, a_extras[i].data, a_extras[i].len, fn);
|
|
|
|
close(fd);
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Load automatically generated extras. */
|
|
|
|
static void load_auto(void) {
|
|
|
|
u32 i;
|
|
|
|
for (i = 0; i < USE_AUTO_EXTRAS; i++) {
|
|
|
|
u8 tmp[MAX_AUTO_EXTRA + 1];
|
|
u8* fn = alloc_printf("%s/.state/auto_extras/auto_%06u", in_dir, i);
|
|
s32 fd, len;
|
|
|
|
fd = open(fn, O_RDONLY, 0600);
|
|
|
|
if (fd < 0) {
|
|
|
|
if (errno != ENOENT) PFATAL("Unable to open '%s'", fn);
|
|
ck_free(fn);
|
|
break;
|
|
|
|
}
|
|
|
|
/* We read one byte more to cheaply detect tokens that are too
|
|
long (and skip them). */
|
|
|
|
len = read(fd, tmp, MAX_AUTO_EXTRA + 1);
|
|
|
|
if (len < 0) PFATAL("Unable to read from '%s'", fn);
|
|
|
|
if (len >= MIN_AUTO_EXTRA && len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(tmp, len);
|
|
|
|
close(fd);
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
if (i) OKF("Loaded %u auto-discovered dictionary tokens.", i);
|
|
else OKF("No auto-generated dictionary tokens to reuse.");
|
|
|
|
}
|
|
|
|
|
|
/* Destroy extras. */
|
|
|
|
static void destroy_extras(void) {
|
|
|
|
u32 i;
|
|
|
|
for (i = 0; i < extras_cnt; i++)
|
|
ck_free(extras[i].data);
|
|
|
|
ck_free(extras);
|
|
|
|
for (i = 0; i < a_extras_cnt; i++)
|
|
ck_free(a_extras[i].data);
|
|
|
|
ck_free(a_extras);
|
|
|
|
}
|
|
|
|
|
|
/* Spin up fork server (instrumented mode only). The idea is explained here:
|
|
|
|
http://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
|
|
|
|
In essence, the instrumentation allows us to skip execve(), and just keep
|
|
cloning a stopped child. So, we just execute once, and then send commands
|
|
through a pipe. The other part of this logic is in afl-as.h. */
|
|
|
|
EXP_ST void init_forkserver(char** argv) {
|
|
|
|
static struct itimerval it;
|
|
int st_pipe[2], ctl_pipe[2];
|
|
int status;
|
|
s32 rlen;
|
|
|
|
ACTF("Spinning up the fork server...");
|
|
|
|
if (pipe(st_pipe) || pipe(ctl_pipe)) PFATAL("pipe() failed");
|
|
|
|
forksrv_pid = fork();
|
|
|
|
if (forksrv_pid < 0) PFATAL("fork() failed");
|
|
|
|
if (!forksrv_pid) {
|
|
|
|
struct rlimit r;
|
|
|
|
/* Umpf. On OpenBSD, the default fd limit for root users is set to
|
|
soft 128. Let's try to fix that... */
|
|
|
|
if (!getrlimit(RLIMIT_NOFILE, &r) && r.rlim_cur < FORKSRV_FD + 2) {
|
|
|
|
r.rlim_cur = FORKSRV_FD + 2;
|
|
setrlimit(RLIMIT_NOFILE, &r); /* Ignore errors */
|
|
|
|
}
|
|
|
|
if (mem_limit) {
|
|
|
|
r.rlim_max = r.rlim_cur = ((rlim_t)mem_limit) << 20;
|
|
|
|
#ifdef RLIMIT_AS
|
|
|
|
setrlimit(RLIMIT_AS, &r); /* Ignore errors */
|
|
|
|
#else
|
|
|
|
/* This takes care of OpenBSD, which doesn't have RLIMIT_AS, but
|
|
according to reliable sources, RLIMIT_DATA covers anonymous
|
|
maps - so we should be getting good protection against OOM bugs. */
|
|
|
|
setrlimit(RLIMIT_DATA, &r); /* Ignore errors */
|
|
|
|
#endif /* ^RLIMIT_AS */
|
|
|
|
|
|
}
|
|
|
|
/* Dumping cores is slow and can lead to anomalies if SIGKILL is delivered
|
|
before the dump is complete. */
|
|
|
|
r.rlim_max = r.rlim_cur = 0;
|
|
|
|
setrlimit(RLIMIT_CORE, &r); /* Ignore errors */
|
|
|
|
/* Isolate the process and configure standard descriptors. If out_file is
|
|
specified, stdin is /dev/null; otherwise, out_fd is cloned instead. */
|
|
|
|
setsid();
|
|
|
|
dup2(dev_null_fd, 1);
|
|
dup2(dev_null_fd, 2);
|
|
|
|
if (out_file) {
|
|
|
|
dup2(dev_null_fd, 0);
|
|
|
|
} else {
|
|
|
|
dup2(out_fd, 0);
|
|
close(out_fd);
|
|
|
|
}
|
|
|
|
/* Set up control and status pipes, close the unneeded original fds. */
|
|
|
|
if (dup2(ctl_pipe[0], FORKSRV_FD) < 0) PFATAL("dup2() failed");
|
|
if (dup2(st_pipe[1], FORKSRV_FD + 1) < 0) PFATAL("dup2() failed");
|
|
|
|
close(ctl_pipe[0]);
|
|
close(ctl_pipe[1]);
|
|
close(st_pipe[0]);
|
|
close(st_pipe[1]);
|
|
|
|
close(out_dir_fd);
|
|
close(dev_null_fd);
|
|
close(dev_urandom_fd);
|
|
close(fileno(plot_file));
|
|
|
|
/* This should improve performance a bit, since it stops the linker from
|
|
doing extra work post-fork(). */
|
|
|
|
if (!getenv("LD_BIND_LAZY")) setenv("LD_BIND_NOW", "1", 0);
|
|
|
|
/* Set sane defaults for ASAN if nothing else specified. */
|
|
|
|
setenv("ASAN_OPTIONS", "abort_on_error=1:"
|
|
"detect_leaks=0:"
|
|
"symbolize=0:"
|
|
"allocator_may_return_null=1", 0);
|
|
|
|
/* MSAN is tricky, because it doesn't support abort_on_error=1 at this
|
|
point. So, we do this in a very hacky way. */
|
|
|
|
setenv("MSAN_OPTIONS", "exit_code=" STRINGIFY(MSAN_ERROR) ":"
|
|
"symbolize=0:"
|
|
"abort_on_error=1:"
|
|
"allocator_may_return_null=1:"
|
|
"msan_track_origins=0", 0);
|
|
|
|
execv(target_path, argv);
|
|
|
|
/* Use a distinctive bitmap signature to tell the parent about execv()
|
|
falling through. */
|
|
|
|
*(u32*)trace_bits = EXEC_FAIL_SIG;
|
|
exit(0);
|
|
|
|
}
|
|
|
|
/* Close the unneeded endpoints. */
|
|
|
|
close(ctl_pipe[0]);
|
|
close(st_pipe[1]);
|
|
|
|
fsrv_ctl_fd = ctl_pipe[1];
|
|
fsrv_st_fd = st_pipe[0];
|
|
|
|
/* Wait for the fork server to come up, but don't wait too long. */
|
|
|
|
it.it_value.tv_sec = ((exec_tmout * FORK_WAIT_MULT) / 1000);
|
|
it.it_value.tv_usec = ((exec_tmout * FORK_WAIT_MULT) % 1000) * 1000;
|
|
|
|
setitimer(ITIMER_REAL, &it, NULL);
|
|
|
|
rlen = read(fsrv_st_fd, &status, 4);
|
|
|
|
it.it_value.tv_sec = 0;
|
|
it.it_value.tv_usec = 0;
|
|
|
|
setitimer(ITIMER_REAL, &it, NULL);
|
|
|
|
/* If we have a four-byte "hello" message from the server, we're all set.
|
|
Otherwise, try to figure out what went wrong. */
|
|
|
|
if (rlen == 4) {
|
|
OKF("All right - fork server is up.");
|
|
return;
|
|
}
|
|
|
|
if (child_timed_out)
|
|
FATAL("Timeout while initializing fork server (adjusting -t may help)");
|
|
|
|
if (waitpid(forksrv_pid, &status, 0) <= 0)
|
|
PFATAL("waitpid() failed");
|
|
|
|
if (WIFSIGNALED(status)) {
|
|
|
|
if (mem_limit && mem_limit < 500 && uses_asan) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, the target binary crashed suddenly, before receiving any input\n"
|
|
" from the fuzzer! Since it seems to be built with ASAN and you have a\n"
|
|
" restrictive memory limit configured, this is expected; please read\n"
|
|
" %s/notes_for_asan.txt for help.\n", doc_path);
|
|
|
|
} else if (!mem_limit) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, the target binary crashed suddenly, before receiving any input\n"
|
|
" from the fuzzer! There are several probable explanations:\n\n"
|
|
|
|
" - The binary is just buggy and explodes entirely on its own. If so, you\n"
|
|
" need to fix the underlying problem or find a better replacement.\n\n"
|
|
|
|
#ifdef __APPLE__
|
|
|
|
" - On MacOS X, the semantics of fork() syscalls are non-standard and may\n"
|
|
" break afl-fuzz performance optimizations when running platform-specific\n"
|
|
" targets. To fix this, set AFL_NO_FORKSRV=1 in the environment.\n\n"
|
|
|
|
#endif /* __APPLE__ */
|
|
|
|
" - Less likely, there is a horrible bug in the fuzzer. If other options\n"
|
|
" fail, poke <lcamtuf@coredump.cx> for troubleshooting tips.\n");
|
|
|
|
} else {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, the target binary crashed suddenly, before receiving any input\n"
|
|
" from the fuzzer! There are several probable explanations:\n\n"
|
|
|
|
" - The current memory limit (%s) is too restrictive, causing the\n"
|
|
" target to hit an OOM condition in the dynamic linker. Try bumping up\n"
|
|
" the limit with the -m setting in the command line. A simple way confirm\n"
|
|
" this diagnosis would be:\n\n"
|
|
|
|
#ifdef RLIMIT_AS
|
|
" ( ulimit -Sv $[%llu << 10]; /path/to/fuzzed_app )\n\n"
|
|
#else
|
|
" ( ulimit -Sd $[%llu << 10]; /path/to/fuzzed_app )\n\n"
|
|
#endif /* ^RLIMIT_AS */
|
|
|
|
" Tip: you can use http://jwilk.net/software/recidivm to quickly\n"
|
|
" estimate the required amount of virtual memory for the binary.\n\n"
|
|
|
|
" - The binary is just buggy and explodes entirely on its own. If so, you\n"
|
|
" need to fix the underlying problem or find a better replacement.\n\n"
|
|
|
|
#ifdef __APPLE__
|
|
|
|
" - On MacOS X, the semantics of fork() syscalls are non-standard and may\n"
|
|
" break afl-fuzz performance optimizations when running platform-specific\n"
|
|
" targets. To fix this, set AFL_NO_FORKSRV=1 in the environment.\n\n"
|
|
|
|
#endif /* __APPLE__ */
|
|
|
|
" - Less likely, there is a horrible bug in the fuzzer. If other options\n"
|
|
" fail, poke <lcamtuf@coredump.cx> for troubleshooting tips.\n",
|
|
DMS(mem_limit << 20), mem_limit - 1);
|
|
|
|
}
|
|
|
|
FATAL("Fork server crashed with signal %d", WTERMSIG(status));
|
|
|
|
}
|
|
|
|
if (*(u32*)trace_bits == EXEC_FAIL_SIG)
|
|
FATAL("Unable to execute target application ('%s')", argv[0]);
|
|
|
|
if (mem_limit && mem_limit < 500 && uses_asan) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Hmm, looks like the target binary terminated before we could complete a\n"
|
|
" handshake with the injected code. Since it seems to be built with ASAN and\n"
|
|
" you have a restrictive memory limit configured, this is expected; please\n"
|
|
" read %s/notes_for_asan.txt for help.\n", doc_path);
|
|
|
|
} else if (!mem_limit) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Hmm, looks like the target binary terminated before we could complete a\n"
|
|
" handshake with the injected code. Perhaps there is a horrible bug in the\n"
|
|
" fuzzer. Poke <lcamtuf@coredump.cx> for troubleshooting tips.\n");
|
|
|
|
} else {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Hmm, looks like the target binary terminated before we could complete a\n"
|
|
" handshake with the injected code. There are %s probable explanations:\n\n"
|
|
|
|
"%s"
|
|
" - The current memory limit (%s) is too restrictive, causing an OOM\n"
|
|
" fault in the dynamic linker. This can be fixed with the -m option. A\n"
|
|
" simple way to confirm the diagnosis may be:\n\n"
|
|
|
|
#ifdef RLIMIT_AS
|
|
" ( ulimit -Sv $[%llu << 10]; /path/to/fuzzed_app )\n\n"
|
|
#else
|
|
" ( ulimit -Sd $[%llu << 10]; /path/to/fuzzed_app )\n\n"
|
|
#endif /* ^RLIMIT_AS */
|
|
|
|
" Tip: you can use http://jwilk.net/software/recidivm to quickly\n"
|
|
" estimate the required amount of virtual memory for the binary.\n\n"
|
|
|
|
" - Less likely, there is a horrible bug in the fuzzer. If other options\n"
|
|
" fail, poke <lcamtuf@coredump.cx> for troubleshooting tips.\n",
|
|
getenv(DEFER_ENV_VAR) ? "three" : "two",
|
|
getenv(DEFER_ENV_VAR) ?
|
|
" - You are using deferred forkserver, but __AFL_INIT() is never\n"
|
|
" reached before the program terminates.\n\n" : "",
|
|
DMS(mem_limit << 20), mem_limit - 1);
|
|
|
|
}
|
|
|
|
FATAL("Fork server handshake failed");
|
|
|
|
}
|
|
|
|
|
|
/* Execute target application, monitoring for timeouts. Return status
|
|
information. The called program will update trace_bits[]. */
|
|
|
|
static u8 run_target(char** argv, u32 timeout) {
|
|
|
|
static struct itimerval it;
|
|
static u32 prev_timed_out = 0;
|
|
static u64 exec_ms = 0;
|
|
|
|
int status = 0;
|
|
u32 tb4;
|
|
|
|
child_timed_out = 0;
|
|
|
|
/* After this memset, trace_bits[] are effectively volatile, so we
|
|
must prevent any earlier operations from venturing into that
|
|
territory. */
|
|
|
|
memset(trace_bits, 0, MAP_SIZE);
|
|
MEM_BARRIER();
|
|
|
|
/* If we're running in "dumb" mode, we can't rely on the fork server
|
|
logic compiled into the target program, so we will just keep calling
|
|
execve(). There is a bit of code duplication between here and
|
|
init_forkserver(), but c'est la vie. */
|
|
|
|
if (dumb_mode == 1 || no_forkserver) {
|
|
|
|
child_pid = fork();
|
|
|
|
if (child_pid < 0) PFATAL("fork() failed");
|
|
|
|
if (!child_pid) {
|
|
|
|
struct rlimit r;
|
|
|
|
if (mem_limit) {
|
|
|
|
r.rlim_max = r.rlim_cur = ((rlim_t)mem_limit) << 20;
|
|
|
|
#ifdef RLIMIT_AS
|
|
|
|
setrlimit(RLIMIT_AS, &r); /* Ignore errors */
|
|
|
|
#else
|
|
|
|
setrlimit(RLIMIT_DATA, &r); /* Ignore errors */
|
|
|
|
#endif /* ^RLIMIT_AS */
|
|
|
|
}
|
|
|
|
r.rlim_max = r.rlim_cur = 0;
|
|
|
|
setrlimit(RLIMIT_CORE, &r); /* Ignore errors */
|
|
|
|
/* Isolate the process and configure standard descriptors. If out_file is
|
|
specified, stdin is /dev/null; otherwise, out_fd is cloned instead. */
|
|
|
|
setsid();
|
|
|
|
dup2(dev_null_fd, 1);
|
|
dup2(dev_null_fd, 2);
|
|
|
|
if (out_file) {
|
|
|
|
dup2(dev_null_fd, 0);
|
|
|
|
} else {
|
|
|
|
dup2(out_fd, 0);
|
|
close(out_fd);
|
|
|
|
}
|
|
|
|
/* On Linux, would be faster to use O_CLOEXEC. Maybe TODO. */
|
|
|
|
close(dev_null_fd);
|
|
close(out_dir_fd);
|
|
close(dev_urandom_fd);
|
|
close(fileno(plot_file));
|
|
|
|
/* Set sane defaults for ASAN if nothing else specified. */
|
|
|
|
setenv("ASAN_OPTIONS", "abort_on_error=1:"
|
|
"detect_leaks=0:"
|
|
"symbolize=0:"
|
|
"allocator_may_return_null=1", 0);
|
|
|
|
setenv("MSAN_OPTIONS", "exit_code=" STRINGIFY(MSAN_ERROR) ":"
|
|
"symbolize=0:"
|
|
"msan_track_origins=0", 0);
|
|
|
|
execv(target_path, argv);
|
|
|
|
/* Use a distinctive bitmap value to tell the parent about execv()
|
|
falling through. */
|
|
|
|
*(u32*)trace_bits = EXEC_FAIL_SIG;
|
|
exit(0);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
s32 res;
|
|
|
|
/* In non-dumb mode, we have the fork server up and running, so simply
|
|
tell it to have at it, and then read back PID. */
|
|
|
|
if ((res = write(fsrv_ctl_fd, &prev_timed_out, 4)) != 4) {
|
|
|
|
if (stop_soon) return 0;
|
|
RPFATAL(res, "Unable to request new process from fork server (OOM?)");
|
|
|
|
}
|
|
|
|
if ((res = read(fsrv_st_fd, &child_pid, 4)) != 4) {
|
|
|
|
if (stop_soon) return 0;
|
|
RPFATAL(res, "Unable to request new process from fork server (OOM?)");
|
|
|
|
}
|
|
|
|
if (child_pid <= 0) FATAL("Fork server is misbehaving (OOM?)");
|
|
|
|
}
|
|
|
|
/* Configure timeout, as requested by user, then wait for child to terminate. */
|
|
|
|
it.it_value.tv_sec = (timeout / 1000);
|
|
it.it_value.tv_usec = (timeout % 1000) * 1000;
|
|
|
|
setitimer(ITIMER_REAL, &it, NULL);
|
|
|
|
/* The SIGALRM handler simply kills the child_pid and sets child_timed_out. */
|
|
|
|
if (dumb_mode == 1 || no_forkserver) {
|
|
|
|
if (waitpid(child_pid, &status, 0) <= 0) PFATAL("waitpid() failed");
|
|
|
|
} else {
|
|
|
|
s32 res;
|
|
|
|
if ((res = read(fsrv_st_fd, &status, 4)) != 4) {
|
|
|
|
if (stop_soon) return 0;
|
|
RPFATAL(res, "Unable to communicate with fork server (OOM?)");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!WIFSTOPPED(status)) child_pid = 0;
|
|
|
|
getitimer(ITIMER_REAL, &it);
|
|
exec_ms = (u64) timeout - (it.it_value.tv_sec * 1000 +
|
|
it.it_value.tv_usec / 1000);
|
|
|
|
it.it_value.tv_sec = 0;
|
|
it.it_value.tv_usec = 0;
|
|
|
|
setitimer(ITIMER_REAL, &it, NULL);
|
|
|
|
total_execs++;
|
|
|
|
/* Any subsequent operations on trace_bits must not be moved by the
|
|
compiler below this point. Past this location, trace_bits[] behave
|
|
very normally and do not have to be treated as volatile. */
|
|
|
|
MEM_BARRIER();
|
|
|
|
tb4 = *(u32*)trace_bits;
|
|
|
|
#ifdef WORD_SIZE_64
|
|
classify_counts((u64*)trace_bits);
|
|
#else
|
|
classify_counts((u32*)trace_bits);
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
prev_timed_out = child_timed_out;
|
|
|
|
/* Report outcome to caller. */
|
|
|
|
if (WIFSIGNALED(status) && !stop_soon) {
|
|
|
|
kill_signal = WTERMSIG(status);
|
|
|
|
if (child_timed_out && kill_signal == SIGKILL) return FAULT_TMOUT;
|
|
|
|
return FAULT_CRASH;
|
|
|
|
}
|
|
|
|
/* A somewhat nasty hack for MSAN, which doesn't support abort_on_error and
|
|
must use a special exit code. */
|
|
|
|
if (uses_asan && WEXITSTATUS(status) == MSAN_ERROR) {
|
|
kill_signal = 0;
|
|
return FAULT_CRASH;
|
|
}
|
|
|
|
if ((dumb_mode == 1 || no_forkserver) && tb4 == EXEC_FAIL_SIG)
|
|
return FAULT_ERROR;
|
|
|
|
/* It makes sense to account for the slowest units only if the testcase was run
|
|
under the user defined timeout. */
|
|
if (!(timeout > exec_tmout) && (slowest_exec_ms < exec_ms)) {
|
|
slowest_exec_ms = exec_ms;
|
|
}
|
|
|
|
return FAULT_NONE;
|
|
|
|
}
|
|
|
|
|
|
/* Write modified data to file for testing. If out_file is set, the old file
|
|
is unlinked and a new one is created. Otherwise, out_fd is rewound and
|
|
truncated. */
|
|
|
|
static void write_to_testcase(void* mem, u32 len) {
|
|
|
|
s32 fd = out_fd;
|
|
|
|
if (out_file) {
|
|
|
|
unlink(out_file); /* Ignore errors. */
|
|
|
|
fd = open(out_file, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to create '%s'", out_file);
|
|
|
|
} else lseek(fd, 0, SEEK_SET);
|
|
|
|
ck_write(fd, mem, len, out_file);
|
|
|
|
if (!out_file) {
|
|
|
|
if (ftruncate(fd, len)) PFATAL("ftruncate() failed");
|
|
lseek(fd, 0, SEEK_SET);
|
|
|
|
} else close(fd);
|
|
|
|
}
|
|
|
|
|
|
/* The same, but with an adjustable gap. Used for trimming. */
|
|
|
|
static void write_with_gap(void* mem, u32 len, u32 skip_at, u32 skip_len) {
|
|
|
|
s32 fd = out_fd;
|
|
u32 tail_len = len - skip_at - skip_len;
|
|
|
|
if (out_file) {
|
|
|
|
unlink(out_file); /* Ignore errors. */
|
|
|
|
fd = open(out_file, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to create '%s'", out_file);
|
|
|
|
} else lseek(fd, 0, SEEK_SET);
|
|
|
|
if (skip_at) ck_write(fd, mem, skip_at, out_file);
|
|
|
|
if (tail_len) ck_write(fd, mem + skip_at + skip_len, tail_len, out_file);
|
|
|
|
if (!out_file) {
|
|
|
|
if (ftruncate(fd, len - skip_len)) PFATAL("ftruncate() failed");
|
|
lseek(fd, 0, SEEK_SET);
|
|
|
|
} else close(fd);
|
|
|
|
}
|
|
|
|
|
|
static void show_stats(void);
|
|
|
|
/* Calibrate a new test case. This is done when processing the input directory
|
|
to warn about flaky or otherwise problematic test cases early on; and when
|
|
new paths are discovered to detect variable behavior and so on. */
|
|
|
|
static u8 calibrate_case(char** argv, struct queue_entry* q, u8* use_mem,
|
|
u32 handicap, u8 from_queue) {
|
|
|
|
static u8 first_trace[MAP_SIZE];
|
|
|
|
u8 fault = 0, new_bits = 0, var_detected = 0, hnb = 0,
|
|
first_run = (q->exec_cksum == 0);
|
|
|
|
u64 start_us, stop_us;
|
|
|
|
s32 old_sc = stage_cur, old_sm = stage_max;
|
|
u32 use_tmout = exec_tmout;
|
|
u8* old_sn = stage_name;
|
|
|
|
/* Be a bit more generous about timeouts when resuming sessions, or when
|
|
trying to calibrate already-added finds. This helps avoid trouble due
|
|
to intermittent latency. */
|
|
|
|
if (!from_queue || resuming_fuzz)
|
|
use_tmout = MAX(exec_tmout + CAL_TMOUT_ADD,
|
|
exec_tmout * CAL_TMOUT_PERC / 100);
|
|
|
|
q->cal_failed++;
|
|
|
|
stage_name = "calibration";
|
|
stage_max = fast_cal ? 3 : CAL_CYCLES;
|
|
|
|
/* Make sure the forkserver is up before we do anything, and let's not
|
|
count its spin-up time toward binary calibration. */
|
|
|
|
if (dumb_mode != 1 && !no_forkserver && !forksrv_pid)
|
|
init_forkserver(argv);
|
|
|
|
if (q->exec_cksum) {
|
|
|
|
memcpy(first_trace, trace_bits, MAP_SIZE);
|
|
hnb = has_new_bits(virgin_bits);
|
|
if (hnb > new_bits) new_bits = hnb;
|
|
|
|
}
|
|
|
|
start_us = get_cur_time_us();
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
u32 cksum;
|
|
|
|
if (!first_run && !(stage_cur % stats_update_freq)) show_stats();
|
|
|
|
write_to_testcase(use_mem, q->len);
|
|
|
|
fault = run_target(argv, use_tmout);
|
|
|
|
/* stop_soon is set by the handler for Ctrl+C. When it's pressed,
|
|
we want to bail out quickly. */
|
|
|
|
if (stop_soon || fault != crash_mode) goto abort_calibration;
|
|
|
|
if (!dumb_mode && !stage_cur && !count_bytes(trace_bits)) {
|
|
fault = FAULT_NOINST;
|
|
goto abort_calibration;
|
|
}
|
|
|
|
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
if (q->exec_cksum != cksum) {
|
|
|
|
hnb = has_new_bits(virgin_bits);
|
|
if (hnb > new_bits) new_bits = hnb;
|
|
|
|
if (q->exec_cksum) {
|
|
|
|
u32 i;
|
|
|
|
for (i = 0; i < MAP_SIZE; i++) {
|
|
|
|
if (!var_bytes[i] && first_trace[i] != trace_bits[i]) {
|
|
|
|
var_bytes[i] = 1;
|
|
stage_max = CAL_CYCLES_LONG;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
var_detected = 1;
|
|
|
|
} else {
|
|
|
|
q->exec_cksum = cksum;
|
|
memcpy(first_trace, trace_bits, MAP_SIZE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
stop_us = get_cur_time_us();
|
|
|
|
total_cal_us += stop_us - start_us;
|
|
total_cal_cycles += stage_max;
|
|
|
|
/* OK, let's collect some stats about the performance of this test case.
|
|
This is used for fuzzing air time calculations in calculate_score(). */
|
|
|
|
q->exec_us = (stop_us - start_us) / stage_max;
|
|
q->bitmap_size = count_bytes(trace_bits);
|
|
q->handicap = handicap;
|
|
q->cal_failed = 0;
|
|
|
|
total_bitmap_size += q->bitmap_size;
|
|
total_bitmap_entries++;
|
|
|
|
update_bitmap_score(q);
|
|
|
|
/* If this case didn't result in new output from the instrumentation, tell
|
|
parent. This is a non-critical problem, but something to warn the user
|
|
about. */
|
|
|
|
if (!dumb_mode && first_run && !fault && !new_bits) fault = FAULT_NOBITS;
|
|
|
|
abort_calibration:
|
|
|
|
if (new_bits == 2 && !q->has_new_cov) {
|
|
q->has_new_cov = 1;
|
|
queued_with_cov++;
|
|
}
|
|
|
|
/* Mark variable paths. */
|
|
|
|
if (var_detected) {
|
|
|
|
var_byte_count = count_bytes(var_bytes);
|
|
|
|
if (!q->var_behavior) {
|
|
mark_as_variable(q);
|
|
queued_variable++;
|
|
}
|
|
|
|
}
|
|
|
|
stage_name = old_sn;
|
|
stage_cur = old_sc;
|
|
stage_max = old_sm;
|
|
|
|
if (!first_run) show_stats();
|
|
|
|
return fault;
|
|
|
|
}
|
|
|
|
|
|
/* Examine map coverage. Called once, for first test case. */
|
|
|
|
static void check_map_coverage(void) {
|
|
|
|
u32 i;
|
|
|
|
if (count_bytes(trace_bits) < 100) return;
|
|
|
|
for (i = (1 << (MAP_SIZE_POW2 - 1)); i < MAP_SIZE; i++)
|
|
if (trace_bits[i]) return;
|
|
|
|
WARNF("Recompile binary with newer version of afl to improve coverage!");
|
|
|
|
}
|
|
|
|
|
|
/* Perform dry run of all test cases to confirm that the app is working as
|
|
expected. This is done only for the initial inputs, and only once. */
|
|
|
|
static void perform_dry_run(char** argv) {
|
|
|
|
struct queue_entry* q = queue;
|
|
u32 cal_failures = 0;
|
|
u8* skip_crashes = getenv("AFL_SKIP_CRASHES");
|
|
|
|
while (q) {
|
|
|
|
u8* use_mem;
|
|
u8 res;
|
|
s32 fd;
|
|
|
|
u8* fn = strrchr(q->fname, '/') + 1;
|
|
|
|
ACTF("Attempting dry run with '%s'...", fn);
|
|
|
|
fd = open(q->fname, O_RDONLY);
|
|
if (fd < 0) PFATAL("Unable to open '%s'", q->fname);
|
|
|
|
use_mem = ck_alloc_nozero(q->len);
|
|
|
|
if (read(fd, use_mem, q->len) != q->len)
|
|
FATAL("Short read from '%s'", q->fname);
|
|
|
|
close(fd);
|
|
|
|
res = calibrate_case(argv, q, use_mem, 0, 1);
|
|
ck_free(use_mem);
|
|
|
|
if (stop_soon) return;
|
|
|
|
if (res == crash_mode || res == FAULT_NOBITS)
|
|
SAYF(cGRA " len = %u, map size = %u, exec speed = %llu us\n" cRST,
|
|
q->len, q->bitmap_size, q->exec_us);
|
|
|
|
switch (res) {
|
|
|
|
case FAULT_NONE:
|
|
|
|
if (q == queue) check_map_coverage();
|
|
|
|
if (crash_mode) FATAL("Test case '%s' does *NOT* crash", fn);
|
|
|
|
break;
|
|
|
|
case FAULT_TMOUT:
|
|
|
|
if (timeout_given) {
|
|
|
|
/* The -t nn+ syntax in the command line sets timeout_given to '2' and
|
|
instructs afl-fuzz to tolerate but skip queue entries that time
|
|
out. */
|
|
|
|
if (timeout_given > 1) {
|
|
WARNF("Test case results in a timeout (skipping)");
|
|
q->cal_failed = CAL_CHANCES;
|
|
cal_failures++;
|
|
break;
|
|
}
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"The program took more than %u ms to process one of the initial test cases.\n"
|
|
" Usually, the right thing to do is to relax the -t option - or to delete it\n"
|
|
" altogether and allow the fuzzer to auto-calibrate. That said, if you know\n"
|
|
" what you are doing and want to simply skip the unruly test cases, append\n"
|
|
" '+' at the end of the value passed to -t ('-t %u+').\n", exec_tmout,
|
|
exec_tmout);
|
|
|
|
FATAL("Test case '%s' results in a timeout", fn);
|
|
|
|
} else {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"The program took more than %u ms to process one of the initial test cases.\n"
|
|
" This is bad news; raising the limit with the -t option is possible, but\n"
|
|
" will probably make the fuzzing process extremely slow.\n\n"
|
|
|
|
" If this test case is just a fluke, the other option is to just avoid it\n"
|
|
" altogether, and find one that is less of a CPU hog.\n", exec_tmout);
|
|
|
|
FATAL("Test case '%s' results in a timeout", fn);
|
|
|
|
}
|
|
|
|
case FAULT_CRASH:
|
|
|
|
if (crash_mode) break;
|
|
|
|
if (skip_crashes) {
|
|
WARNF("Test case results in a crash (skipping)");
|
|
q->cal_failed = CAL_CHANCES;
|
|
cal_failures++;
|
|
break;
|
|
}
|
|
|
|
if (mem_limit) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Oops, the program crashed with one of the test cases provided. There are\n"
|
|
" several possible explanations:\n\n"
|
|
|
|
" - The test case causes known crashes under normal working conditions. If\n"
|
|
" so, please remove it. The fuzzer should be seeded with interesting\n"
|
|
" inputs - but not ones that cause an outright crash.\n\n"
|
|
|
|
" - The current memory limit (%s) is too low for this program, causing\n"
|
|
" it to die due to OOM when parsing valid files. To fix this, try\n"
|
|
" bumping it up with the -m setting in the command line. If in doubt,\n"
|
|
" try something along the lines of:\n\n"
|
|
|
|
#ifdef RLIMIT_AS
|
|
" ( ulimit -Sv $[%llu << 10]; /path/to/binary [...] <testcase )\n\n"
|
|
#else
|
|
" ( ulimit -Sd $[%llu << 10]; /path/to/binary [...] <testcase )\n\n"
|
|
#endif /* ^RLIMIT_AS */
|
|
|
|
" Tip: you can use http://jwilk.net/software/recidivm to quickly\n"
|
|
" estimate the required amount of virtual memory for the binary. Also,\n"
|
|
" if you are using ASAN, see %s/notes_for_asan.txt.\n\n"
|
|
|
|
#ifdef __APPLE__
|
|
|
|
" - On MacOS X, the semantics of fork() syscalls are non-standard and may\n"
|
|
" break afl-fuzz performance optimizations when running platform-specific\n"
|
|
" binaries. To fix this, set AFL_NO_FORKSRV=1 in the environment.\n\n"
|
|
|
|
#endif /* __APPLE__ */
|
|
|
|
" - Least likely, there is a horrible bug in the fuzzer. If other options\n"
|
|
" fail, poke <lcamtuf@coredump.cx> for troubleshooting tips.\n",
|
|
DMS(mem_limit << 20), mem_limit - 1, doc_path);
|
|
|
|
} else {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Oops, the program crashed with one of the test cases provided. There are\n"
|
|
" several possible explanations:\n\n"
|
|
|
|
" - The test case causes known crashes under normal working conditions. If\n"
|
|
" so, please remove it. The fuzzer should be seeded with interesting\n"
|
|
" inputs - but not ones that cause an outright crash.\n\n"
|
|
|
|
#ifdef __APPLE__
|
|
|
|
" - On MacOS X, the semantics of fork() syscalls are non-standard and may\n"
|
|
" break afl-fuzz performance optimizations when running platform-specific\n"
|
|
" binaries. To fix this, set AFL_NO_FORKSRV=1 in the environment.\n\n"
|
|
|
|
#endif /* __APPLE__ */
|
|
|
|
" - Least likely, there is a horrible bug in the fuzzer. If other options\n"
|
|
" fail, poke <lcamtuf@coredump.cx> for troubleshooting tips.\n");
|
|
|
|
}
|
|
|
|
FATAL("Test case '%s' results in a crash", fn);
|
|
|
|
case FAULT_ERROR:
|
|
|
|
FATAL("Unable to execute target application ('%s')", argv[0]);
|
|
|
|
case FAULT_NOINST:
|
|
|
|
FATAL("No instrumentation detected");
|
|
|
|
case FAULT_NOBITS:
|
|
|
|
useless_at_start++;
|
|
|
|
if (!in_bitmap && !shuffle_queue)
|
|
WARNF("No new instrumentation output, test case may be useless.");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (q->var_behavior) WARNF("Instrumentation output varies across runs.");
|
|
|
|
q = q->next;
|
|
|
|
}
|
|
|
|
if (cal_failures) {
|
|
|
|
if (cal_failures == queued_paths)
|
|
FATAL("All test cases time out%s, giving up!",
|
|
skip_crashes ? " or crash" : "");
|
|
|
|
WARNF("Skipped %u test cases (%0.02f%%) due to timeouts%s.", cal_failures,
|
|
((double)cal_failures) * 100 / queued_paths,
|
|
skip_crashes ? " or crashes" : "");
|
|
|
|
if (cal_failures * 5 > queued_paths)
|
|
WARNF(cLRD "High percentage of rejected test cases, check settings!");
|
|
|
|
}
|
|
|
|
OKF("All test cases processed.");
|
|
|
|
}
|
|
|
|
|
|
/* Helper function: link() if possible, copy otherwise. */
|
|
|
|
static void link_or_copy(u8* old_path, u8* new_path) {
|
|
|
|
s32 i = link(old_path, new_path);
|
|
s32 sfd, dfd;
|
|
u8* tmp;
|
|
|
|
if (!i) return;
|
|
|
|
sfd = open(old_path, O_RDONLY);
|
|
if (sfd < 0) PFATAL("Unable to open '%s'", old_path);
|
|
|
|
dfd = open(new_path, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (dfd < 0) PFATAL("Unable to create '%s'", new_path);
|
|
|
|
tmp = ck_alloc(64 * 1024);
|
|
|
|
while ((i = read(sfd, tmp, 64 * 1024)) > 0)
|
|
ck_write(dfd, tmp, i, new_path);
|
|
|
|
if (i < 0) PFATAL("read() failed");
|
|
|
|
ck_free(tmp);
|
|
close(sfd);
|
|
close(dfd);
|
|
|
|
}
|
|
|
|
|
|
static void nuke_resume_dir(void);
|
|
|
|
/* Create hard links for input test cases in the output directory, choosing
|
|
good names and pivoting accordingly. */
|
|
|
|
static void pivot_inputs(void) {
|
|
|
|
struct queue_entry* q = queue;
|
|
u32 id = 0;
|
|
|
|
ACTF("Creating hard links for all input files...");
|
|
|
|
while (q) {
|
|
|
|
u8 *nfn, *rsl = strrchr(q->fname, '/');
|
|
u32 orig_id;
|
|
|
|
if (!rsl) rsl = q->fname; else rsl++;
|
|
|
|
/* If the original file name conforms to the syntax and the recorded
|
|
ID matches the one we'd assign, just use the original file name.
|
|
This is valuable for resuming fuzzing runs. */
|
|
|
|
#ifndef SIMPLE_FILES
|
|
# define CASE_PREFIX "id:"
|
|
#else
|
|
# define CASE_PREFIX "id_"
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
if (!strncmp(rsl, CASE_PREFIX, 3) &&
|
|
sscanf(rsl + 3, "%06u", &orig_id) == 1 && orig_id == id) {
|
|
|
|
u8* src_str;
|
|
u32 src_id;
|
|
|
|
resuming_fuzz = 1;
|
|
nfn = alloc_printf("%s/queue/%s", out_dir, rsl);
|
|
|
|
/* Since we're at it, let's also try to find parent and figure out the
|
|
appropriate depth for this entry. */
|
|
|
|
src_str = strchr(rsl + 3, ':');
|
|
|
|
if (src_str && sscanf(src_str + 1, "%06u", &src_id) == 1) {
|
|
|
|
struct queue_entry* s = queue;
|
|
while (src_id-- && s) s = s->next;
|
|
if (s) q->depth = s->depth + 1;
|
|
|
|
if (max_depth < q->depth) max_depth = q->depth;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* No dice - invent a new name, capturing the original one as a
|
|
substring. */
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
u8* use_name = strstr(rsl, ",orig:");
|
|
|
|
if (use_name) use_name += 6; else use_name = rsl;
|
|
nfn = alloc_printf("%s/queue/id:%06u,orig:%s", out_dir, id, use_name);
|
|
|
|
#else
|
|
|
|
nfn = alloc_printf("%s/queue/id_%06u", out_dir, id);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
}
|
|
|
|
/* Pivot to the new queue entry. */
|
|
|
|
link_or_copy(q->fname, nfn);
|
|
ck_free(q->fname);
|
|
q->fname = nfn;
|
|
|
|
/* Make sure that the passed_det value carries over, too. */
|
|
|
|
if (q->passed_det) mark_as_det_done(q);
|
|
|
|
q = q->next;
|
|
id++;
|
|
|
|
}
|
|
|
|
if (in_place_resume) nuke_resume_dir();
|
|
|
|
}
|
|
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
/* Construct a file name for a new test case, capturing the operation
|
|
that led to its discovery. Uses a static buffer. */
|
|
|
|
static u8* describe_op(u8 hnb) {
|
|
|
|
static u8 ret[256];
|
|
|
|
if (syncing_party) {
|
|
|
|
sprintf(ret, "sync:%s,src:%06u", syncing_party, syncing_case);
|
|
|
|
} else {
|
|
|
|
sprintf(ret, "src:%06u", current_entry);
|
|
|
|
if (splicing_with >= 0)
|
|
sprintf(ret + strlen(ret), "+%06u", splicing_with);
|
|
|
|
sprintf(ret + strlen(ret), ",op:%s", stage_short);
|
|
|
|
if (stage_cur_byte >= 0) {
|
|
|
|
sprintf(ret + strlen(ret), ",pos:%u", stage_cur_byte);
|
|
|
|
if (stage_val_type != STAGE_VAL_NONE)
|
|
sprintf(ret + strlen(ret), ",val:%s%+d",
|
|
(stage_val_type == STAGE_VAL_BE) ? "be:" : "",
|
|
stage_cur_val);
|
|
|
|
} else sprintf(ret + strlen(ret), ",rep:%u", stage_cur_val);
|
|
|
|
}
|
|
|
|
if (hnb == 2) strcat(ret, ",+cov");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
#endif /* !SIMPLE_FILES */
|
|
|
|
|
|
/* Write a message accompanying the crash directory :-) */
|
|
|
|
static void write_crash_readme(void) {
|
|
|
|
u8* fn = alloc_printf("%s/crashes/README.txt", out_dir);
|
|
s32 fd;
|
|
FILE* f;
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
ck_free(fn);
|
|
|
|
/* Do not die on errors here - that would be impolite. */
|
|
|
|
if (fd < 0) return;
|
|
|
|
f = fdopen(fd, "w");
|
|
|
|
if (!f) {
|
|
close(fd);
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "Command line used to find this crash:\n\n"
|
|
|
|
"%s\n\n"
|
|
|
|
"If you can't reproduce a bug outside of afl-fuzz, be sure to set the same\n"
|
|
"memory limit. The limit used for this fuzzing session was %s.\n\n"
|
|
|
|
"Need a tool to minimize test cases before investigating the crashes or sending\n"
|
|
"them to a vendor? Check out the afl-tmin that comes with the fuzzer!\n\n"
|
|
|
|
"Found any cool bugs in open-source tools using afl-fuzz? If yes, please drop\n"
|
|
"me a mail at <lcamtuf@coredump.cx> once the issues are fixed - I'd love to\n"
|
|
"add your finds to the gallery at:\n\n"
|
|
|
|
" http://lcamtuf.coredump.cx/afl/\n\n"
|
|
|
|
"Thanks :-)\n",
|
|
|
|
orig_cmdline, DMS(mem_limit << 20)); /* ignore errors */
|
|
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
|
|
/* Check if the result of an execve() during routine fuzzing is interesting,
|
|
save or queue the input test case for further analysis if so. Returns 1 if
|
|
entry is saved, 0 otherwise. */
|
|
|
|
static u8 save_if_interesting(char** argv, void* mem, u32 len, u8 fault) {
|
|
|
|
u8 *fn = "";
|
|
u8 hnb;
|
|
s32 fd;
|
|
u8 keeping = 0, res;
|
|
|
|
if (fault == crash_mode) {
|
|
|
|
/* Keep only if there are new bits in the map, add to queue for
|
|
future fuzzing, etc. */
|
|
|
|
if (!(hnb = has_new_bits(virgin_bits))) {
|
|
if (crash_mode) total_crashes++;
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
fn = alloc_printf("%s/queue/id:%06u,%s", out_dir, queued_paths,
|
|
describe_op(hnb));
|
|
|
|
#else
|
|
|
|
fn = alloc_printf("%s/queue/id_%06u", out_dir, queued_paths);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
add_to_queue(fn, len, 0);
|
|
|
|
if (hnb == 2) {
|
|
queue_top->has_new_cov = 1;
|
|
queued_with_cov++;
|
|
}
|
|
|
|
queue_top->exec_cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
/* Try to calibrate inline; this also calls update_bitmap_score() when
|
|
successful. */
|
|
|
|
res = calibrate_case(argv, queue_top, mem, queue_cycle - 1, 0);
|
|
|
|
if (res == FAULT_ERROR)
|
|
FATAL("Unable to execute target application");
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
ck_write(fd, mem, len, fn);
|
|
close(fd);
|
|
|
|
keeping = 1;
|
|
|
|
}
|
|
|
|
switch (fault) {
|
|
|
|
case FAULT_TMOUT:
|
|
|
|
/* Timeouts are not very interesting, but we're still obliged to keep
|
|
a handful of samples. We use the presence of new bits in the
|
|
hang-specific bitmap as a signal of uniqueness. In "dumb" mode, we
|
|
just keep everything. */
|
|
|
|
total_tmouts++;
|
|
|
|
if (unique_hangs >= KEEP_UNIQUE_HANG) return keeping;
|
|
|
|
if (!dumb_mode) {
|
|
|
|
#ifdef WORD_SIZE_64
|
|
simplify_trace((u64*)trace_bits);
|
|
#else
|
|
simplify_trace((u32*)trace_bits);
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
if (!has_new_bits(virgin_tmout)) return keeping;
|
|
|
|
}
|
|
|
|
unique_tmouts++;
|
|
|
|
/* Before saving, we make sure that it's a genuine hang by re-running
|
|
the target with a more generous timeout (unless the default timeout
|
|
is already generous). */
|
|
|
|
if (exec_tmout < hang_tmout) {
|
|
|
|
u8 new_fault;
|
|
write_to_testcase(mem, len);
|
|
new_fault = run_target(argv, hang_tmout);
|
|
|
|
/* A corner case that one user reported bumping into: increasing the
|
|
timeout actually uncovers a crash. Make sure we don't discard it if
|
|
so. */
|
|
|
|
if (!stop_soon && new_fault == FAULT_CRASH) goto keep_as_crash;
|
|
|
|
if (stop_soon || new_fault != FAULT_TMOUT) return keeping;
|
|
|
|
}
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
fn = alloc_printf("%s/hangs/id:%06llu,%s", out_dir,
|
|
unique_hangs, describe_op(0));
|
|
|
|
#else
|
|
|
|
fn = alloc_printf("%s/hangs/id_%06llu", out_dir,
|
|
unique_hangs);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
unique_hangs++;
|
|
|
|
last_hang_time = get_cur_time();
|
|
|
|
break;
|
|
|
|
case FAULT_CRASH:
|
|
|
|
keep_as_crash:
|
|
|
|
/* This is handled in a manner roughly similar to timeouts,
|
|
except for slightly different limits and no need to re-run test
|
|
cases. */
|
|
|
|
total_crashes++;
|
|
|
|
if (unique_crashes >= KEEP_UNIQUE_CRASH) return keeping;
|
|
|
|
if (!dumb_mode) {
|
|
|
|
#ifdef WORD_SIZE_64
|
|
simplify_trace((u64*)trace_bits);
|
|
#else
|
|
simplify_trace((u32*)trace_bits);
|
|
#endif /* ^WORD_SIZE_64 */
|
|
|
|
if (!has_new_bits(virgin_crash)) return keeping;
|
|
|
|
}
|
|
|
|
if (!unique_crashes) write_crash_readme();
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
fn = alloc_printf("%s/crashes/id:%06llu,sig:%02u,%s", out_dir,
|
|
unique_crashes, kill_signal, describe_op(0));
|
|
|
|
#else
|
|
|
|
fn = alloc_printf("%s/crashes/id_%06llu_%02u", out_dir, unique_crashes,
|
|
kill_signal);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
unique_crashes++;
|
|
|
|
last_crash_time = get_cur_time();
|
|
last_crash_execs = total_execs;
|
|
|
|
break;
|
|
|
|
case FAULT_ERROR: FATAL("Unable to execute target application");
|
|
|
|
default: return keeping;
|
|
|
|
}
|
|
|
|
/* If we're here, we apparently want to save the crash or hang
|
|
test case, too. */
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
ck_write(fd, mem, len, fn);
|
|
close(fd);
|
|
|
|
ck_free(fn);
|
|
|
|
return keeping;
|
|
|
|
}
|
|
|
|
|
|
/* When resuming, try to find the queue position to start from. This makes sense
|
|
only when resuming, and when we can find the original fuzzer_stats. */
|
|
|
|
static u32 find_start_position(void) {
|
|
|
|
static u8 tmp[4096]; /* Ought to be enough for anybody. */
|
|
|
|
u8 *fn, *off;
|
|
s32 fd, i;
|
|
u32 ret;
|
|
|
|
if (!resuming_fuzz) return 0;
|
|
|
|
if (in_place_resume) fn = alloc_printf("%s/fuzzer_stats", out_dir);
|
|
else fn = alloc_printf("%s/../fuzzer_stats", in_dir);
|
|
|
|
fd = open(fn, O_RDONLY);
|
|
ck_free(fn);
|
|
|
|
if (fd < 0) return 0;
|
|
|
|
i = read(fd, tmp, sizeof(tmp) - 1); (void)i; /* Ignore errors */
|
|
close(fd);
|
|
|
|
off = strstr(tmp, "cur_path : ");
|
|
if (!off) return 0;
|
|
|
|
ret = atoi(off + 20);
|
|
if (ret >= queued_paths) ret = 0;
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
/* The same, but for timeouts. The idea is that when resuming sessions without
|
|
-t given, we don't want to keep auto-scaling the timeout over and over
|
|
again to prevent it from growing due to random flukes. */
|
|
|
|
static void find_timeout(void) {
|
|
|
|
static u8 tmp[4096]; /* Ought to be enough for anybody. */
|
|
|
|
u8 *fn, *off;
|
|
s32 fd, i;
|
|
u32 ret;
|
|
|
|
if (!resuming_fuzz) return;
|
|
|
|
if (in_place_resume) fn = alloc_printf("%s/fuzzer_stats", out_dir);
|
|
else fn = alloc_printf("%s/../fuzzer_stats", in_dir);
|
|
|
|
fd = open(fn, O_RDONLY);
|
|
ck_free(fn);
|
|
|
|
if (fd < 0) return;
|
|
|
|
i = read(fd, tmp, sizeof(tmp) - 1); (void)i; /* Ignore errors */
|
|
close(fd);
|
|
|
|
off = strstr(tmp, "exec_timeout : ");
|
|
if (!off) return;
|
|
|
|
ret = atoi(off + 20);
|
|
if (ret <= 4) return;
|
|
|
|
exec_tmout = ret;
|
|
timeout_given = 3;
|
|
|
|
}
|
|
|
|
|
|
/* Update stats file for unattended monitoring. */
|
|
|
|
static void write_stats_file(double bitmap_cvg, double stability, double eps) {
|
|
|
|
static double last_bcvg, last_stab, last_eps;
|
|
static struct rusage usage;
|
|
|
|
u8* fn = alloc_printf("%s/fuzzer_stats", out_dir);
|
|
s32 fd;
|
|
FILE* f;
|
|
|
|
fd = open(fn, O_WRONLY | O_CREAT | O_TRUNC, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
|
|
ck_free(fn);
|
|
|
|
f = fdopen(fd, "w");
|
|
|
|
if (!f) PFATAL("fdopen() failed");
|
|
|
|
/* Keep last values in case we're called from another context
|
|
where exec/sec stats and such are not readily available. */
|
|
|
|
if (!bitmap_cvg && !stability && !eps) {
|
|
bitmap_cvg = last_bcvg;
|
|
stability = last_stab;
|
|
eps = last_eps;
|
|
} else {
|
|
last_bcvg = bitmap_cvg;
|
|
last_stab = stability;
|
|
last_eps = eps;
|
|
}
|
|
|
|
fprintf(f, "start_time : %llu\n"
|
|
"last_update : %llu\n"
|
|
"fuzzer_pid : %u\n"
|
|
"cycles_done : %llu\n"
|
|
"execs_done : %llu\n"
|
|
"execs_per_sec : %0.02f\n"
|
|
"paths_total : %u\n"
|
|
"paths_favored : %u\n"
|
|
"paths_found : %u\n"
|
|
"paths_imported : %u\n"
|
|
"max_depth : %u\n"
|
|
"cur_path : %u\n" /* Must match find_start_position() */
|
|
"pending_favs : %u\n"
|
|
"pending_total : %u\n"
|
|
"variable_paths : %u\n"
|
|
"stability : %0.02f%%\n"
|
|
"bitmap_cvg : %0.02f%%\n"
|
|
"unique_crashes : %llu\n"
|
|
"unique_hangs : %llu\n"
|
|
"last_path : %llu\n"
|
|
"last_crash : %llu\n"
|
|
"last_hang : %llu\n"
|
|
"execs_since_crash : %llu\n"
|
|
"exec_timeout : %u\n" /* Must match find_timeout() */
|
|
"afl_banner : %s\n"
|
|
"afl_version : " VERSION "\n"
|
|
"target_mode : %s%s%s%s%s%s%s\n"
|
|
"command_line : %s\n"
|
|
"slowest_exec_ms : %llu\n",
|
|
start_time / 1000, get_cur_time() / 1000, getpid(),
|
|
queue_cycle ? (queue_cycle - 1) : 0, total_execs, eps,
|
|
queued_paths, queued_favored, queued_discovered, queued_imported,
|
|
max_depth, current_entry, pending_favored, pending_not_fuzzed,
|
|
queued_variable, stability, bitmap_cvg, unique_crashes,
|
|
unique_hangs, last_path_time / 1000, last_crash_time / 1000,
|
|
last_hang_time / 1000, total_execs - last_crash_execs,
|
|
exec_tmout, use_banner,
|
|
qemu_mode ? "qemu " : "", dumb_mode ? " dumb " : "",
|
|
no_forkserver ? "no_forksrv " : "", crash_mode ? "crash " : "",
|
|
persistent_mode ? "persistent " : "", deferred_mode ? "deferred " : "",
|
|
(qemu_mode || dumb_mode || no_forkserver || crash_mode ||
|
|
persistent_mode || deferred_mode) ? "" : "default",
|
|
orig_cmdline, slowest_exec_ms);
|
|
/* ignore errors */
|
|
|
|
/* Get rss value from the children
|
|
We must have killed the forkserver process and called waitpid
|
|
before calling getrusage */
|
|
if (getrusage(RUSAGE_CHILDREN, &usage)) {
|
|
WARNF("getrusage failed");
|
|
} else if (usage.ru_maxrss == 0) {
|
|
fprintf(f, "peak_rss_mb : not available while afl is running\n");
|
|
} else {
|
|
#ifdef __APPLE__
|
|
fprintf(f, "peak_rss_mb : %zu\n", usage.ru_maxrss >> 20);
|
|
#else
|
|
fprintf(f, "peak_rss_mb : %zu\n", usage.ru_maxrss >> 10);
|
|
#endif /* ^__APPLE__ */
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
|
|
/* Update the plot file if there is a reason to. */
|
|
|
|
static void maybe_update_plot_file(double bitmap_cvg, double eps) {
|
|
|
|
static u32 prev_qp, prev_pf, prev_pnf, prev_ce, prev_md;
|
|
static u64 prev_qc, prev_uc, prev_uh;
|
|
|
|
if (prev_qp == queued_paths && prev_pf == pending_favored &&
|
|
prev_pnf == pending_not_fuzzed && prev_ce == current_entry &&
|
|
prev_qc == queue_cycle && prev_uc == unique_crashes &&
|
|
prev_uh == unique_hangs && prev_md == max_depth) return;
|
|
|
|
prev_qp = queued_paths;
|
|
prev_pf = pending_favored;
|
|
prev_pnf = pending_not_fuzzed;
|
|
prev_ce = current_entry;
|
|
prev_qc = queue_cycle;
|
|
prev_uc = unique_crashes;
|
|
prev_uh = unique_hangs;
|
|
prev_md = max_depth;
|
|
|
|
/* Fields in the file:
|
|
|
|
unix_time, cycles_done, cur_path, paths_total, paths_not_fuzzed,
|
|
favored_not_fuzzed, unique_crashes, unique_hangs, max_depth,
|
|
execs_per_sec */
|
|
|
|
fprintf(plot_file,
|
|
"%llu, %llu, %u, %u, %u, %u, %0.02f%%, %llu, %llu, %u, %0.02f\n",
|
|
get_cur_time() / 1000, queue_cycle - 1, current_entry, queued_paths,
|
|
pending_not_fuzzed, pending_favored, bitmap_cvg, unique_crashes,
|
|
unique_hangs, max_depth, eps); /* ignore errors */
|
|
|
|
fflush(plot_file);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* A helper function for maybe_delete_out_dir(), deleting all prefixed
|
|
files in a directory. */
|
|
|
|
static u8 delete_files(u8* path, u8* prefix) {
|
|
|
|
DIR* d;
|
|
struct dirent* d_ent;
|
|
|
|
d = opendir(path);
|
|
|
|
if (!d) return 0;
|
|
|
|
while ((d_ent = readdir(d))) {
|
|
|
|
if (d_ent->d_name[0] != '.' && (!prefix ||
|
|
!strncmp(d_ent->d_name, prefix, strlen(prefix)))) {
|
|
|
|
u8* fname = alloc_printf("%s/%s", path, d_ent->d_name);
|
|
if (unlink(fname)) PFATAL("Unable to delete '%s'", fname);
|
|
ck_free(fname);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
closedir(d);
|
|
|
|
return !!rmdir(path);
|
|
|
|
}
|
|
|
|
|
|
/* Get the number of runnable processes, with some simple smoothing. */
|
|
|
|
static double get_runnable_processes(void) {
|
|
|
|
static double res;
|
|
|
|
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
|
|
|
|
/* I don't see any portable sysctl or so that would quickly give us the
|
|
number of runnable processes; the 1-minute load average can be a
|
|
semi-decent approximation, though. */
|
|
|
|
if (getloadavg(&res, 1) != 1) return 0;
|
|
|
|
#else
|
|
|
|
/* On Linux, /proc/stat is probably the best way; load averages are
|
|
computed in funny ways and sometimes don't reflect extremely short-lived
|
|
processes well. */
|
|
|
|
FILE* f = fopen("/proc/stat", "r");
|
|
u8 tmp[1024];
|
|
u32 val = 0;
|
|
|
|
if (!f) return 0;
|
|
|
|
while (fgets(tmp, sizeof(tmp), f)) {
|
|
|
|
if (!strncmp(tmp, "procs_running ", 14) ||
|
|
!strncmp(tmp, "procs_blocked ", 14)) val += atoi(tmp + 14);
|
|
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
if (!res) {
|
|
|
|
res = val;
|
|
|
|
} else {
|
|
|
|
res = res * (1.0 - 1.0 / AVG_SMOOTHING) +
|
|
((double)val) * (1.0 / AVG_SMOOTHING);
|
|
|
|
}
|
|
|
|
#endif /* ^(__APPLE__ || __FreeBSD__ || __OpenBSD__) */
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
/* Delete the temporary directory used for in-place session resume. */
|
|
|
|
static void nuke_resume_dir(void) {
|
|
|
|
u8* fn;
|
|
|
|
fn = alloc_printf("%s/_resume/.state/deterministic_done", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/_resume/.state/auto_extras", out_dir);
|
|
if (delete_files(fn, "auto_")) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/_resume/.state/redundant_edges", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/_resume/.state/variable_behavior", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/_resume/.state", out_dir);
|
|
if (rmdir(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/_resume", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
return;
|
|
|
|
dir_cleanup_failed:
|
|
|
|
FATAL("_resume directory cleanup failed");
|
|
|
|
}
|
|
|
|
|
|
/* Delete fuzzer output directory if we recognize it as ours, if the fuzzer
|
|
is not currently running, and if the last run time isn't too great. */
|
|
|
|
static void maybe_delete_out_dir(void) {
|
|
|
|
FILE* f;
|
|
u8 *fn = alloc_printf("%s/fuzzer_stats", out_dir);
|
|
|
|
/* See if the output directory is locked. If yes, bail out. If not,
|
|
create a lock that will persist for the lifetime of the process
|
|
(this requires leaving the descriptor open).*/
|
|
|
|
out_dir_fd = open(out_dir, O_RDONLY);
|
|
if (out_dir_fd < 0) PFATAL("Unable to open '%s'", out_dir);
|
|
|
|
#ifndef __sun
|
|
|
|
if (flock(out_dir_fd, LOCK_EX | LOCK_NB) && errno == EWOULDBLOCK) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Looks like the job output directory is being actively used by another\n"
|
|
" instance of afl-fuzz. You will need to choose a different %s\n"
|
|
" or stop the other process first.\n",
|
|
sync_id ? "fuzzer ID" : "output location");
|
|
|
|
FATAL("Directory '%s' is in use", out_dir);
|
|
|
|
}
|
|
|
|
#endif /* !__sun */
|
|
|
|
f = fopen(fn, "r");
|
|
|
|
if (f) {
|
|
|
|
u64 start_time, last_update;
|
|
|
|
if (fscanf(f, "start_time : %llu\n"
|
|
"last_update : %llu\n", &start_time, &last_update) != 2)
|
|
FATAL("Malformed data in '%s'", fn);
|
|
|
|
fclose(f);
|
|
|
|
/* Let's see how much work is at stake. */
|
|
|
|
if (!in_place_resume && last_update - start_time > OUTPUT_GRACE * 60) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"The job output directory already exists and contains the results of more\n"
|
|
" than %u minutes worth of fuzzing. To avoid data loss, afl-fuzz will *NOT*\n"
|
|
" automatically delete this data for you.\n\n"
|
|
|
|
" If you wish to start a new session, remove or rename the directory manually,\n"
|
|
" or specify a different output location for this job. To resume the old\n"
|
|
" session, put '-' as the input directory in the command line ('-i -') and\n"
|
|
" try again.\n", OUTPUT_GRACE);
|
|
|
|
FATAL("At-risk data found in '%s'", out_dir);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ck_free(fn);
|
|
|
|
/* The idea for in-place resume is pretty simple: we temporarily move the old
|
|
queue/ to a new location that gets deleted once import to the new queue/
|
|
is finished. If _resume/ already exists, the current queue/ may be
|
|
incomplete due to an earlier abort, so we want to use the old _resume/
|
|
dir instead, and we let rename() fail silently. */
|
|
|
|
if (in_place_resume) {
|
|
|
|
u8* orig_q = alloc_printf("%s/queue", out_dir);
|
|
|
|
in_dir = alloc_printf("%s/_resume", out_dir);
|
|
|
|
rename(orig_q, in_dir); /* Ignore errors */
|
|
|
|
OKF("Output directory exists, will attempt session resume.");
|
|
|
|
ck_free(orig_q);
|
|
|
|
} else {
|
|
|
|
OKF("Output directory exists but deemed OK to reuse.");
|
|
|
|
}
|
|
|
|
ACTF("Deleting old session data...");
|
|
|
|
/* Okay, let's get the ball rolling! First, we need to get rid of the entries
|
|
in <out_dir>/.synced/.../id:*, if any are present. */
|
|
|
|
if (!in_place_resume) {
|
|
|
|
fn = alloc_printf("%s/.synced", out_dir);
|
|
if (delete_files(fn, NULL)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
/* Next, we need to clean up <out_dir>/queue/.state/ subdirectories: */
|
|
|
|
fn = alloc_printf("%s/queue/.state/deterministic_done", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/queue/.state/auto_extras", out_dir);
|
|
if (delete_files(fn, "auto_")) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/queue/.state/redundant_edges", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/queue/.state/variable_behavior", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
/* Then, get rid of the .state subdirectory itself (should be empty by now)
|
|
and everything matching <out_dir>/queue/id:*. */
|
|
|
|
fn = alloc_printf("%s/queue/.state", out_dir);
|
|
if (rmdir(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/queue", out_dir);
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
/* All right, let's do <out_dir>/crashes/id:* and <out_dir>/hangs/id:*. */
|
|
|
|
if (!in_place_resume) {
|
|
|
|
fn = alloc_printf("%s/crashes/README.txt", out_dir);
|
|
unlink(fn); /* Ignore errors */
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
fn = alloc_printf("%s/crashes", out_dir);
|
|
|
|
/* Make backup of the crashes directory if it's not empty and if we're
|
|
doing in-place resume. */
|
|
|
|
if (in_place_resume && rmdir(fn)) {
|
|
|
|
time_t cur_t = time(0);
|
|
struct tm* t = localtime(&cur_t);
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
u8* nfn = alloc_printf("%s.%04u-%02u-%02u-%02u:%02u:%02u", fn,
|
|
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
|
|
t->tm_hour, t->tm_min, t->tm_sec);
|
|
|
|
#else
|
|
|
|
u8* nfn = alloc_printf("%s_%04u%02u%02u%02u%02u%02u", fn,
|
|
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
|
|
t->tm_hour, t->tm_min, t->tm_sec);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
rename(fn, nfn); /* Ignore errors. */
|
|
ck_free(nfn);
|
|
|
|
}
|
|
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/hangs", out_dir);
|
|
|
|
/* Backup hangs, too. */
|
|
|
|
if (in_place_resume && rmdir(fn)) {
|
|
|
|
time_t cur_t = time(0);
|
|
struct tm* t = localtime(&cur_t);
|
|
|
|
#ifndef SIMPLE_FILES
|
|
|
|
u8* nfn = alloc_printf("%s.%04u-%02u-%02u-%02u:%02u:%02u", fn,
|
|
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
|
|
t->tm_hour, t->tm_min, t->tm_sec);
|
|
|
|
#else
|
|
|
|
u8* nfn = alloc_printf("%s_%04u%02u%02u%02u%02u%02u", fn,
|
|
t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
|
|
t->tm_hour, t->tm_min, t->tm_sec);
|
|
|
|
#endif /* ^!SIMPLE_FILES */
|
|
|
|
rename(fn, nfn); /* Ignore errors. */
|
|
ck_free(nfn);
|
|
|
|
}
|
|
|
|
if (delete_files(fn, CASE_PREFIX)) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
/* And now, for some finishing touches. */
|
|
|
|
fn = alloc_printf("%s/.cur_input", out_dir);
|
|
if (unlink(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
fn = alloc_printf("%s/fuzz_bitmap", out_dir);
|
|
if (unlink(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
if (!in_place_resume) {
|
|
fn = alloc_printf("%s/fuzzer_stats", out_dir);
|
|
if (unlink(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
}
|
|
|
|
fn = alloc_printf("%s/plot_data", out_dir);
|
|
if (unlink(fn) && errno != ENOENT) goto dir_cleanup_failed;
|
|
ck_free(fn);
|
|
|
|
OKF("Output dir cleanup successful.");
|
|
|
|
/* Wow... is that all? If yes, celebrate! */
|
|
|
|
return;
|
|
|
|
dir_cleanup_failed:
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, the fuzzer tried to reuse your output directory, but bumped into\n"
|
|
" some files that shouldn't be there or that couldn't be removed - so it\n"
|
|
" decided to abort! This happened while processing this path:\n\n"
|
|
|
|
" %s\n\n"
|
|
" Please examine and manually delete the files, or specify a different\n"
|
|
" output location for the tool.\n", fn);
|
|
|
|
FATAL("Output directory cleanup failed");
|
|
|
|
}
|
|
|
|
|
|
static void check_term_size(void);
|
|
|
|
|
|
/* A spiffy retro stats screen! This is called every stats_update_freq
|
|
execve() calls, plus in several other circumstances. */
|
|
|
|
static void show_stats(void) {
|
|
|
|
static u64 last_stats_ms, last_plot_ms, last_ms, last_execs;
|
|
static double avg_exec;
|
|
double t_byte_ratio, stab_ratio;
|
|
|
|
u64 cur_ms;
|
|
u32 t_bytes, t_bits;
|
|
|
|
u32 banner_len, banner_pad;
|
|
u8 tmp[256];
|
|
|
|
cur_ms = get_cur_time();
|
|
|
|
/* If not enough time has passed since last UI update, bail out. */
|
|
|
|
if (cur_ms - last_ms < 1000 / UI_TARGET_HZ) return;
|
|
|
|
/* Check if we're past the 10 minute mark. */
|
|
|
|
if (cur_ms - start_time > 10 * 60 * 1000) run_over10m = 1;
|
|
|
|
/* Calculate smoothed exec speed stats. */
|
|
|
|
if (!last_execs) {
|
|
|
|
avg_exec = ((double)total_execs) * 1000 / (cur_ms - start_time);
|
|
|
|
} else {
|
|
|
|
double cur_avg = ((double)(total_execs - last_execs)) * 1000 /
|
|
(cur_ms - last_ms);
|
|
|
|
/* If there is a dramatic (5x+) jump in speed, reset the indicator
|
|
more quickly. */
|
|
|
|
if (cur_avg * 5 < avg_exec || cur_avg / 5 > avg_exec)
|
|
avg_exec = cur_avg;
|
|
|
|
avg_exec = avg_exec * (1.0 - 1.0 / AVG_SMOOTHING) +
|
|
cur_avg * (1.0 / AVG_SMOOTHING);
|
|
|
|
}
|
|
|
|
last_ms = cur_ms;
|
|
last_execs = total_execs;
|
|
|
|
/* Tell the callers when to contact us (as measured in execs). */
|
|
|
|
stats_update_freq = avg_exec / (UI_TARGET_HZ * 10);
|
|
if (!stats_update_freq) stats_update_freq = 1;
|
|
|
|
/* Do some bitmap stats. */
|
|
|
|
t_bytes = count_non_255_bytes(virgin_bits);
|
|
t_byte_ratio = ((double)t_bytes * 100) / MAP_SIZE;
|
|
|
|
if (t_bytes)
|
|
stab_ratio = 100 - ((double)var_byte_count) * 100 / t_bytes;
|
|
else
|
|
stab_ratio = 100;
|
|
|
|
/* Roughly every minute, update fuzzer stats and save auto tokens. */
|
|
|
|
if (cur_ms - last_stats_ms > STATS_UPDATE_SEC * 1000) {
|
|
|
|
last_stats_ms = cur_ms;
|
|
write_stats_file(t_byte_ratio, stab_ratio, avg_exec);
|
|
save_auto();
|
|
write_bitmap();
|
|
|
|
}
|
|
|
|
/* Every now and then, write plot data. */
|
|
|
|
if (cur_ms - last_plot_ms > PLOT_UPDATE_SEC * 1000) {
|
|
|
|
last_plot_ms = cur_ms;
|
|
maybe_update_plot_file(t_byte_ratio, avg_exec);
|
|
|
|
}
|
|
|
|
/* Honor AFL_EXIT_WHEN_DONE and AFL_BENCH_UNTIL_CRASH. */
|
|
|
|
if (!dumb_mode && cycles_wo_finds > 100 && !pending_not_fuzzed &&
|
|
getenv("AFL_EXIT_WHEN_DONE")) stop_soon = 2;
|
|
|
|
if (total_crashes && getenv("AFL_BENCH_UNTIL_CRASH")) stop_soon = 2;
|
|
|
|
/* If we're not on TTY, bail out. */
|
|
|
|
if (not_on_tty) return;
|
|
|
|
/* Compute some mildly useful bitmap stats. */
|
|
|
|
t_bits = (MAP_SIZE << 3) - count_bits(virgin_bits);
|
|
|
|
/* Now, for the visuals... */
|
|
|
|
if (clear_screen) {
|
|
|
|
SAYF(TERM_CLEAR CURSOR_HIDE);
|
|
clear_screen = 0;
|
|
|
|
check_term_size();
|
|
|
|
}
|
|
|
|
SAYF(TERM_HOME);
|
|
|
|
if (term_too_small) {
|
|
|
|
SAYF(cBRI "Your terminal is too small to display the UI.\n"
|
|
"Please resize terminal window to at least 80x25.\n" cRST);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Let's start by drawing a centered banner. */
|
|
|
|
banner_len = (crash_mode ? 24 : 22) + strlen(VERSION) + strlen(use_banner);
|
|
banner_pad = (80 - banner_len) / 2;
|
|
memset(tmp, ' ', banner_pad);
|
|
|
|
sprintf(tmp + banner_pad, "%s " cLCY VERSION cLGN
|
|
" (%s)", crash_mode ? cPIN "peruvian were-rabbit" :
|
|
cYEL "american fuzzy lop", use_banner);
|
|
|
|
SAYF("\n%s\n\n", tmp);
|
|
|
|
/* "Handy" shortcuts for drawing boxes... */
|
|
|
|
#define bSTG bSTART cGRA
|
|
#define bH2 bH bH
|
|
#define bH5 bH2 bH2 bH
|
|
#define bH10 bH5 bH5
|
|
#define bH20 bH10 bH10
|
|
#define bH30 bH20 bH10
|
|
#define SP5 " "
|
|
#define SP10 SP5 SP5
|
|
#define SP20 SP10 SP10
|
|
|
|
/* Lord, forgive me this. */
|
|
|
|
SAYF(SET_G1 bSTG bLT bH bSTOP cCYA " process timing " bSTG bH30 bH5 bH2 bHB
|
|
bH bSTOP cCYA " overall results " bSTG bH5 bRT "\n");
|
|
|
|
if (dumb_mode) {
|
|
|
|
strcpy(tmp, cRST);
|
|
|
|
} else {
|
|
|
|
u64 min_wo_finds = (cur_ms - last_path_time) / 1000 / 60;
|
|
|
|
/* First queue cycle: don't stop now! */
|
|
if (queue_cycle == 1 || min_wo_finds < 15) strcpy(tmp, cMGN); else
|
|
|
|
/* Subsequent cycles, but we're still making finds. */
|
|
if (cycles_wo_finds < 25 || min_wo_finds < 30) strcpy(tmp, cYEL); else
|
|
|
|
/* No finds for a long time and no test cases to try. */
|
|
if (cycles_wo_finds > 100 && !pending_not_fuzzed && min_wo_finds > 120)
|
|
strcpy(tmp, cLGN);
|
|
|
|
/* Default: cautiously OK to stop? */
|
|
else strcpy(tmp, cLBL);
|
|
|
|
}
|
|
|
|
SAYF(bV bSTOP " run time : " cRST "%-34s " bSTG bV bSTOP
|
|
" cycles done : %s%-5s " bSTG bV "\n",
|
|
DTD(cur_ms, start_time), tmp, DI(queue_cycle - 1));
|
|
|
|
/* We want to warn people about not seeing new paths after a full cycle,
|
|
except when resuming fuzzing or running in non-instrumented mode. */
|
|
|
|
if (!dumb_mode && (last_path_time || resuming_fuzz || queue_cycle == 1 ||
|
|
in_bitmap || crash_mode)) {
|
|
|
|
SAYF(bV bSTOP " last new path : " cRST "%-34s ",
|
|
DTD(cur_ms, last_path_time));
|
|
|
|
} else {
|
|
|
|
if (dumb_mode)
|
|
|
|
SAYF(bV bSTOP " last new path : " cPIN "n/a" cRST
|
|
" (non-instrumented mode) ");
|
|
|
|
else
|
|
|
|
SAYF(bV bSTOP " last new path : " cRST "none yet " cLRD
|
|
"(odd, check syntax!) ");
|
|
|
|
}
|
|
|
|
SAYF(bSTG bV bSTOP " total paths : " cRST "%-5s " bSTG bV "\n",
|
|
DI(queued_paths));
|
|
|
|
/* Highlight crashes in red if found, denote going over the KEEP_UNIQUE_CRASH
|
|
limit with a '+' appended to the count. */
|
|
|
|
sprintf(tmp, "%s%s", DI(unique_crashes),
|
|
(unique_crashes >= KEEP_UNIQUE_CRASH) ? "+" : "");
|
|
|
|
SAYF(bV bSTOP " last uniq crash : " cRST "%-34s " bSTG bV bSTOP
|
|
" uniq crashes : %s%-6s " bSTG bV "\n",
|
|
DTD(cur_ms, last_crash_time), unique_crashes ? cLRD : cRST,
|
|
tmp);
|
|
|
|
sprintf(tmp, "%s%s", DI(unique_hangs),
|
|
(unique_hangs >= KEEP_UNIQUE_HANG) ? "+" : "");
|
|
|
|
SAYF(bV bSTOP " last uniq hang : " cRST "%-34s " bSTG bV bSTOP
|
|
" uniq hangs : " cRST "%-6s " bSTG bV "\n",
|
|
DTD(cur_ms, last_hang_time), tmp);
|
|
|
|
SAYF(bVR bH bSTOP cCYA " cycle progress " bSTG bH20 bHB bH bSTOP cCYA
|
|
" map coverage " bSTG bH bHT bH20 bH2 bH bVL "\n");
|
|
|
|
/* This gets funny because we want to print several variable-length variables
|
|
together, but then cram them into a fixed-width field - so we need to
|
|
put them in a temporary buffer first. */
|
|
|
|
sprintf(tmp, "%s%s (%0.02f%%)", DI(current_entry),
|
|
queue_cur->favored ? "" : "*",
|
|
((double)current_entry * 100) / queued_paths);
|
|
|
|
SAYF(bV bSTOP " now processing : " cRST "%-17s " bSTG bV bSTOP, tmp);
|
|
|
|
sprintf(tmp, "%0.02f%% / %0.02f%%", ((double)queue_cur->bitmap_size) *
|
|
100 / MAP_SIZE, t_byte_ratio);
|
|
|
|
SAYF(" map density : %s%-21s " bSTG bV "\n", t_byte_ratio > 70 ? cLRD :
|
|
((t_bytes < 200 && !dumb_mode) ? cPIN : cRST), tmp);
|
|
|
|
sprintf(tmp, "%s (%0.02f%%)", DI(cur_skipped_paths),
|
|
((double)cur_skipped_paths * 100) / queued_paths);
|
|
|
|
SAYF(bV bSTOP " paths timed out : " cRST "%-17s " bSTG bV, tmp);
|
|
|
|
sprintf(tmp, "%0.02f bits/tuple",
|
|
t_bytes ? (((double)t_bits) / t_bytes) : 0);
|
|
|
|
SAYF(bSTOP " count coverage : " cRST "%-21s " bSTG bV "\n", tmp);
|
|
|
|
SAYF(bVR bH bSTOP cCYA " stage progress " bSTG bH20 bX bH bSTOP cCYA
|
|
" findings in depth " bSTG bH20 bVL "\n");
|
|
|
|
sprintf(tmp, "%s (%0.02f%%)", DI(queued_favored),
|
|
((double)queued_favored) * 100 / queued_paths);
|
|
|
|
/* Yeah... it's still going on... halp? */
|
|
|
|
SAYF(bV bSTOP " now trying : " cRST "%-21s " bSTG bV bSTOP
|
|
" favored paths : " cRST "%-22s " bSTG bV "\n", stage_name, tmp);
|
|
|
|
if (!stage_max) {
|
|
|
|
sprintf(tmp, "%s/-", DI(stage_cur));
|
|
|
|
} else {
|
|
|
|
sprintf(tmp, "%s/%s (%0.02f%%)", DI(stage_cur), DI(stage_max),
|
|
((double)stage_cur) * 100 / stage_max);
|
|
|
|
}
|
|
|
|
SAYF(bV bSTOP " stage execs : " cRST "%-21s " bSTG bV bSTOP, tmp);
|
|
|
|
sprintf(tmp, "%s (%0.02f%%)", DI(queued_with_cov),
|
|
((double)queued_with_cov) * 100 / queued_paths);
|
|
|
|
SAYF(" new edges on : " cRST "%-22s " bSTG bV "\n", tmp);
|
|
|
|
sprintf(tmp, "%s (%s%s unique)", DI(total_crashes), DI(unique_crashes),
|
|
(unique_crashes >= KEEP_UNIQUE_CRASH) ? "+" : "");
|
|
|
|
if (crash_mode) {
|
|
|
|
SAYF(bV bSTOP " total execs : " cRST "%-21s " bSTG bV bSTOP
|
|
" new crashes : %s%-22s " bSTG bV "\n", DI(total_execs),
|
|
unique_crashes ? cLRD : cRST, tmp);
|
|
|
|
} else {
|
|
|
|
SAYF(bV bSTOP " total execs : " cRST "%-21s " bSTG bV bSTOP
|
|
" total crashes : %s%-22s " bSTG bV "\n", DI(total_execs),
|
|
unique_crashes ? cLRD : cRST, tmp);
|
|
|
|
}
|
|
|
|
/* Show a warning about slow execution. */
|
|
|
|
if (avg_exec < 100) {
|
|
|
|
sprintf(tmp, "%s/sec (%s)", DF(avg_exec), avg_exec < 20 ?
|
|
"zzzz..." : "slow!");
|
|
|
|
SAYF(bV bSTOP " exec speed : " cLRD "%-21s ", tmp);
|
|
|
|
} else {
|
|
|
|
sprintf(tmp, "%s/sec", DF(avg_exec));
|
|
SAYF(bV bSTOP " exec speed : " cRST "%-21s ", tmp);
|
|
|
|
}
|
|
|
|
sprintf(tmp, "%s (%s%s unique)", DI(total_tmouts), DI(unique_tmouts),
|
|
(unique_hangs >= KEEP_UNIQUE_HANG) ? "+" : "");
|
|
|
|
SAYF (bSTG bV bSTOP " total tmouts : " cRST "%-22s " bSTG bV "\n", tmp);
|
|
|
|
/* Aaaalmost there... hold on! */
|
|
|
|
SAYF(bVR bH cCYA bSTOP " fuzzing strategy yields " bSTG bH10 bH bHT bH10
|
|
bH5 bHB bH bSTOP cCYA " path geometry " bSTG bH5 bH2 bH bVL "\n");
|
|
|
|
if (skip_deterministic) {
|
|
|
|
strcpy(tmp, "n/a, n/a, n/a");
|
|
|
|
} else {
|
|
|
|
sprintf(tmp, "%s/%s, %s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_FLIP1]), DI(stage_cycles[STAGE_FLIP1]),
|
|
DI(stage_finds[STAGE_FLIP2]), DI(stage_cycles[STAGE_FLIP2]),
|
|
DI(stage_finds[STAGE_FLIP4]), DI(stage_cycles[STAGE_FLIP4]));
|
|
|
|
}
|
|
|
|
SAYF(bV bSTOP " bit flips : " cRST "%-37s " bSTG bV bSTOP " levels : "
|
|
cRST "%-10s " bSTG bV "\n", tmp, DI(max_depth));
|
|
|
|
if (!skip_deterministic)
|
|
sprintf(tmp, "%s/%s, %s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_FLIP8]), DI(stage_cycles[STAGE_FLIP8]),
|
|
DI(stage_finds[STAGE_FLIP16]), DI(stage_cycles[STAGE_FLIP16]),
|
|
DI(stage_finds[STAGE_FLIP32]), DI(stage_cycles[STAGE_FLIP32]));
|
|
|
|
SAYF(bV bSTOP " byte flips : " cRST "%-37s " bSTG bV bSTOP " pending : "
|
|
cRST "%-10s " bSTG bV "\n", tmp, DI(pending_not_fuzzed));
|
|
|
|
if (!skip_deterministic)
|
|
sprintf(tmp, "%s/%s, %s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_ARITH8]), DI(stage_cycles[STAGE_ARITH8]),
|
|
DI(stage_finds[STAGE_ARITH16]), DI(stage_cycles[STAGE_ARITH16]),
|
|
DI(stage_finds[STAGE_ARITH32]), DI(stage_cycles[STAGE_ARITH32]));
|
|
|
|
SAYF(bV bSTOP " arithmetics : " cRST "%-37s " bSTG bV bSTOP " pend fav : "
|
|
cRST "%-10s " bSTG bV "\n", tmp, DI(pending_favored));
|
|
|
|
if (!skip_deterministic)
|
|
sprintf(tmp, "%s/%s, %s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_INTEREST8]), DI(stage_cycles[STAGE_INTEREST8]),
|
|
DI(stage_finds[STAGE_INTEREST16]), DI(stage_cycles[STAGE_INTEREST16]),
|
|
DI(stage_finds[STAGE_INTEREST32]), DI(stage_cycles[STAGE_INTEREST32]));
|
|
|
|
SAYF(bV bSTOP " known ints : " cRST "%-37s " bSTG bV bSTOP " own finds : "
|
|
cRST "%-10s " bSTG bV "\n", tmp, DI(queued_discovered));
|
|
|
|
if (!skip_deterministic)
|
|
sprintf(tmp, "%s/%s, %s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_EXTRAS_UO]), DI(stage_cycles[STAGE_EXTRAS_UO]),
|
|
DI(stage_finds[STAGE_EXTRAS_UI]), DI(stage_cycles[STAGE_EXTRAS_UI]),
|
|
DI(stage_finds[STAGE_EXTRAS_AO]), DI(stage_cycles[STAGE_EXTRAS_AO]));
|
|
|
|
SAYF(bV bSTOP " dictionary : " cRST "%-37s " bSTG bV bSTOP
|
|
" imported : " cRST "%-10s " bSTG bV "\n", tmp,
|
|
sync_id ? DI(queued_imported) : (u8*)"n/a");
|
|
|
|
sprintf(tmp, "%s/%s, %s/%s",
|
|
DI(stage_finds[STAGE_HAVOC]), DI(stage_cycles[STAGE_HAVOC]),
|
|
DI(stage_finds[STAGE_SPLICE]), DI(stage_cycles[STAGE_SPLICE]));
|
|
|
|
SAYF(bV bSTOP " havoc : " cRST "%-37s " bSTG bV bSTOP, tmp);
|
|
|
|
if (t_bytes) sprintf(tmp, "%0.02f%%", stab_ratio);
|
|
else strcpy(tmp, "n/a");
|
|
|
|
SAYF(" stability : %s%-10s " bSTG bV "\n", (stab_ratio < 85 && var_byte_count > 40)
|
|
? cLRD : ((queued_variable && (!persistent_mode || var_byte_count > 20))
|
|
? cMGN : cRST), tmp);
|
|
|
|
if (!bytes_trim_out) {
|
|
|
|
sprintf(tmp, "n/a, ");
|
|
|
|
} else {
|
|
|
|
sprintf(tmp, "%0.02f%%/%s, ",
|
|
((double)(bytes_trim_in - bytes_trim_out)) * 100 / bytes_trim_in,
|
|
DI(trim_execs));
|
|
|
|
}
|
|
|
|
if (!blocks_eff_total) {
|
|
|
|
u8 tmp2[128];
|
|
|
|
sprintf(tmp2, "n/a");
|
|
strcat(tmp, tmp2);
|
|
|
|
} else {
|
|
|
|
u8 tmp2[128];
|
|
|
|
sprintf(tmp2, "%0.02f%%",
|
|
((double)(blocks_eff_total - blocks_eff_select)) * 100 /
|
|
blocks_eff_total);
|
|
|
|
strcat(tmp, tmp2);
|
|
|
|
}
|
|
|
|
SAYF(bV bSTOP " trim : " cRST "%-37s " bSTG bVR bH20 bH2 bH2 bRB "\n"
|
|
bLB bH30 bH20 bH2 bH bRB bSTOP cRST RESET_G1, tmp);
|
|
|
|
/* Provide some CPU utilization stats. */
|
|
|
|
if (cpu_core_count) {
|
|
|
|
double cur_runnable = get_runnable_processes();
|
|
u32 cur_utilization = cur_runnable * 100 / cpu_core_count;
|
|
|
|
u8* cpu_color = cCYA;
|
|
|
|
/* If we could still run one or more processes, use green. */
|
|
|
|
if (cpu_core_count > 1 && cur_runnable + 1 <= cpu_core_count)
|
|
cpu_color = cLGN;
|
|
|
|
/* If we're clearly oversubscribed, use red. */
|
|
|
|
if (!no_cpu_meter_red && cur_utilization >= 150) cpu_color = cLRD;
|
|
|
|
#ifdef HAVE_AFFINITY
|
|
|
|
if (cpu_aff >= 0) {
|
|
|
|
SAYF(SP10 cGRA "[cpu%03u:%s%3u%%" cGRA "]\r" cRST,
|
|
MIN(cpu_aff, 999), cpu_color,
|
|
MIN(cur_utilization, 999));
|
|
|
|
} else {
|
|
|
|
SAYF(SP10 cGRA " [cpu:%s%3u%%" cGRA "]\r" cRST,
|
|
cpu_color, MIN(cur_utilization, 999));
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
SAYF(SP10 cGRA " [cpu:%s%3u%%" cGRA "]\r" cRST,
|
|
cpu_color, MIN(cur_utilization, 999));
|
|
|
|
#endif /* ^HAVE_AFFINITY */
|
|
|
|
} else SAYF("\r");
|
|
|
|
/* Hallelujah! */
|
|
|
|
fflush(0);
|
|
|
|
}
|
|
|
|
|
|
/* Display quick statistics at the end of processing the input directory,
|
|
plus a bunch of warnings. Some calibration stuff also ended up here,
|
|
along with several hardcoded constants. Maybe clean up eventually. */
|
|
|
|
static void show_init_stats(void) {
|
|
|
|
struct queue_entry* q = queue;
|
|
u32 min_bits = 0, max_bits = 0;
|
|
u64 min_us = 0, max_us = 0;
|
|
u64 avg_us = 0;
|
|
u32 max_len = 0;
|
|
|
|
if (total_cal_cycles) avg_us = total_cal_us / total_cal_cycles;
|
|
|
|
while (q) {
|
|
|
|
if (!min_us || q->exec_us < min_us) min_us = q->exec_us;
|
|
if (q->exec_us > max_us) max_us = q->exec_us;
|
|
|
|
if (!min_bits || q->bitmap_size < min_bits) min_bits = q->bitmap_size;
|
|
if (q->bitmap_size > max_bits) max_bits = q->bitmap_size;
|
|
|
|
if (q->len > max_len) max_len = q->len;
|
|
|
|
q = q->next;
|
|
|
|
}
|
|
|
|
SAYF("\n");
|
|
|
|
if (avg_us > (qemu_mode ? 50000 : 10000))
|
|
WARNF(cLRD "The target binary is pretty slow! See %s/perf_tips.txt.",
|
|
doc_path);
|
|
|
|
/* Let's keep things moving with slow binaries. */
|
|
|
|
if (avg_us > 50000) havoc_div = 10; /* 0-19 execs/sec */
|
|
else if (avg_us > 20000) havoc_div = 5; /* 20-49 execs/sec */
|
|
else if (avg_us > 10000) havoc_div = 2; /* 50-100 execs/sec */
|
|
|
|
if (!resuming_fuzz) {
|
|
|
|
if (max_len > 50 * 1024)
|
|
WARNF(cLRD "Some test cases are huge (%s) - see %s/perf_tips.txt!",
|
|
DMS(max_len), doc_path);
|
|
else if (max_len > 10 * 1024)
|
|
WARNF("Some test cases are big (%s) - see %s/perf_tips.txt.",
|
|
DMS(max_len), doc_path);
|
|
|
|
if (useless_at_start && !in_bitmap)
|
|
WARNF(cLRD "Some test cases look useless. Consider using a smaller set.");
|
|
|
|
if (queued_paths > 100)
|
|
WARNF(cLRD "You probably have far too many input files! Consider trimming down.");
|
|
else if (queued_paths > 20)
|
|
WARNF("You have lots of input files; try starting small.");
|
|
|
|
}
|
|
|
|
OKF("Here are some useful stats:\n\n"
|
|
|
|
cGRA " Test case count : " cRST "%u favored, %u variable, %u total\n"
|
|
cGRA " Bitmap range : " cRST "%u to %u bits (average: %0.02f bits)\n"
|
|
cGRA " Exec timing : " cRST "%s to %s us (average: %s us)\n",
|
|
queued_favored, queued_variable, queued_paths, min_bits, max_bits,
|
|
((double)total_bitmap_size) / (total_bitmap_entries ? total_bitmap_entries : 1),
|
|
DI(min_us), DI(max_us), DI(avg_us));
|
|
|
|
if (!timeout_given) {
|
|
|
|
/* Figure out the appropriate timeout. The basic idea is: 5x average or
|
|
1x max, rounded up to EXEC_TM_ROUND ms and capped at 1 second.
|
|
|
|
If the program is slow, the multiplier is lowered to 2x or 3x, because
|
|
random scheduler jitter is less likely to have any impact, and because
|
|
our patience is wearing thin =) */
|
|
|
|
if (avg_us > 50000) exec_tmout = avg_us * 2 / 1000;
|
|
else if (avg_us > 10000) exec_tmout = avg_us * 3 / 1000;
|
|
else exec_tmout = avg_us * 5 / 1000;
|
|
|
|
exec_tmout = MAX(exec_tmout, max_us / 1000);
|
|
exec_tmout = (exec_tmout + EXEC_TM_ROUND) / EXEC_TM_ROUND * EXEC_TM_ROUND;
|
|
|
|
if (exec_tmout > EXEC_TIMEOUT) exec_tmout = EXEC_TIMEOUT;
|
|
|
|
ACTF("No -t option specified, so I'll use exec timeout of %u ms.",
|
|
exec_tmout);
|
|
|
|
timeout_given = 1;
|
|
|
|
} else if (timeout_given == 3) {
|
|
|
|
ACTF("Applying timeout settings from resumed session (%u ms).", exec_tmout);
|
|
|
|
}
|
|
|
|
/* In dumb mode, re-running every timing out test case with a generous time
|
|
limit is very expensive, so let's select a more conservative default. */
|
|
|
|
if (dumb_mode && !getenv("AFL_HANG_TMOUT"))
|
|
hang_tmout = MIN(EXEC_TIMEOUT, exec_tmout * 2 + 100);
|
|
|
|
OKF("All set and ready to roll!");
|
|
|
|
}
|
|
|
|
|
|
/* Find first power of two greater or equal to val (assuming val under
|
|
2^31). */
|
|
|
|
static u32 next_p2(u32 val) {
|
|
|
|
u32 ret = 1;
|
|
while (val > ret) ret <<= 1;
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
/* Trim all new test cases to save cycles when doing deterministic checks. The
|
|
trimmer uses power-of-two increments somewhere between 1/16 and 1/1024 of
|
|
file size, to keep the stage short and sweet. */
|
|
|
|
static u8 trim_case(char** argv, struct queue_entry* q, u8* in_buf) {
|
|
|
|
static u8 tmp[64];
|
|
static u8 clean_trace[MAP_SIZE];
|
|
|
|
u8 needs_write = 0, fault = 0;
|
|
u32 trim_exec = 0;
|
|
u32 remove_len;
|
|
u32 len_p2;
|
|
|
|
/* Although the trimmer will be less useful when variable behavior is
|
|
detected, it will still work to some extent, so we don't check for
|
|
this. */
|
|
|
|
if (q->len < 5) return 0;
|
|
|
|
stage_name = tmp;
|
|
bytes_trim_in += q->len;
|
|
|
|
/* Select initial chunk len, starting with large steps. */
|
|
|
|
len_p2 = next_p2(q->len);
|
|
|
|
remove_len = MAX(len_p2 / TRIM_START_STEPS, TRIM_MIN_BYTES);
|
|
|
|
/* Continue until the number of steps gets too high or the stepover
|
|
gets too small. */
|
|
|
|
while (remove_len >= MAX(len_p2 / TRIM_END_STEPS, TRIM_MIN_BYTES)) {
|
|
|
|
u32 remove_pos = remove_len;
|
|
|
|
sprintf(tmp, "trim %s/%s", DI(remove_len), DI(remove_len));
|
|
|
|
stage_cur = 0;
|
|
stage_max = q->len / remove_len;
|
|
|
|
while (remove_pos < q->len) {
|
|
|
|
u32 trim_avail = MIN(remove_len, q->len - remove_pos);
|
|
u32 cksum;
|
|
|
|
write_with_gap(in_buf, q->len, remove_pos, trim_avail);
|
|
|
|
fault = run_target(argv, exec_tmout);
|
|
trim_execs++;
|
|
|
|
if (stop_soon || fault == FAULT_ERROR) goto abort_trimming;
|
|
|
|
/* Note that we don't keep track of crashes or hangs here; maybe TODO? */
|
|
|
|
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
/* If the deletion had no impact on the trace, make it permanent. This
|
|
isn't perfect for variable-path inputs, but we're just making a
|
|
best-effort pass, so it's not a big deal if we end up with false
|
|
negatives every now and then. */
|
|
|
|
if (cksum == q->exec_cksum) {
|
|
|
|
u32 move_tail = q->len - remove_pos - trim_avail;
|
|
|
|
q->len -= trim_avail;
|
|
len_p2 = next_p2(q->len);
|
|
|
|
memmove(in_buf + remove_pos, in_buf + remove_pos + trim_avail,
|
|
move_tail);
|
|
|
|
/* Let's save a clean trace, which will be needed by
|
|
update_bitmap_score once we're done with the trimming stuff. */
|
|
|
|
if (!needs_write) {
|
|
|
|
needs_write = 1;
|
|
memcpy(clean_trace, trace_bits, MAP_SIZE);
|
|
|
|
}
|
|
|
|
} else remove_pos += remove_len;
|
|
|
|
/* Since this can be slow, update the screen every now and then. */
|
|
|
|
if (!(trim_exec++ % stats_update_freq)) show_stats();
|
|
stage_cur++;
|
|
|
|
}
|
|
|
|
remove_len >>= 1;
|
|
|
|
}
|
|
|
|
/* If we have made changes to in_buf, we also need to update the on-disk
|
|
version of the test case. */
|
|
|
|
if (needs_write) {
|
|
|
|
s32 fd;
|
|
|
|
unlink(q->fname); /* ignore errors */
|
|
|
|
fd = open(q->fname, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
|
|
if (fd < 0) PFATAL("Unable to create '%s'", q->fname);
|
|
|
|
ck_write(fd, in_buf, q->len, q->fname);
|
|
close(fd);
|
|
|
|
memcpy(trace_bits, clean_trace, MAP_SIZE);
|
|
update_bitmap_score(q);
|
|
|
|
}
|
|
|
|
abort_trimming:
|
|
|
|
bytes_trim_out += q->len;
|
|
return fault;
|
|
|
|
}
|
|
|
|
|
|
/* Write a modified test case, run program, process results. Handle
|
|
error conditions, returning 1 if it's time to bail out. This is
|
|
a helper function for fuzz_one(). */
|
|
|
|
EXP_ST u8 common_fuzz_stuff(char** argv, u8* out_buf, u32 len) {
|
|
|
|
u8 fault;
|
|
|
|
if (post_handler) {
|
|
|
|
out_buf = post_handler(out_buf, &len);
|
|
if (!out_buf || !len) return 0;
|
|
|
|
}
|
|
|
|
write_to_testcase(out_buf, len);
|
|
|
|
fault = run_target(argv, exec_tmout);
|
|
|
|
if (stop_soon) return 1;
|
|
|
|
if (fault == FAULT_TMOUT) {
|
|
|
|
if (subseq_tmouts++ > TMOUT_LIMIT) {
|
|
cur_skipped_paths++;
|
|
return 1;
|
|
}
|
|
|
|
} else subseq_tmouts = 0;
|
|
|
|
/* Users can hit us with SIGUSR1 to request the current input
|
|
to be abandoned. */
|
|
|
|
if (skip_requested) {
|
|
|
|
skip_requested = 0;
|
|
cur_skipped_paths++;
|
|
return 1;
|
|
|
|
}
|
|
|
|
/* This handles FAULT_ERROR for us: */
|
|
|
|
queued_discovered += save_if_interesting(argv, out_buf, len, fault);
|
|
|
|
if (!(stage_cur % stats_update_freq) || stage_cur + 1 == stage_max)
|
|
show_stats();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Helper to choose random block len for block operations in fuzz_one().
|
|
Doesn't return zero, provided that max_len is > 0. */
|
|
|
|
static u32 choose_block_len(u32 limit) {
|
|
|
|
u32 min_value, max_value;
|
|
u32 rlim = MIN(queue_cycle, 3);
|
|
|
|
if (!run_over10m) rlim = 1;
|
|
|
|
switch (UR(rlim)) {
|
|
|
|
case 0: min_value = 1;
|
|
max_value = HAVOC_BLK_SMALL;
|
|
break;
|
|
|
|
case 1: min_value = HAVOC_BLK_SMALL;
|
|
max_value = HAVOC_BLK_MEDIUM;
|
|
break;
|
|
|
|
default:
|
|
|
|
if (UR(10)) {
|
|
|
|
min_value = HAVOC_BLK_MEDIUM;
|
|
max_value = HAVOC_BLK_LARGE;
|
|
|
|
} else {
|
|
|
|
min_value = HAVOC_BLK_LARGE;
|
|
max_value = HAVOC_BLK_XL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (min_value >= limit) min_value = 1;
|
|
|
|
return min_value + UR(MIN(max_value, limit) - min_value + 1);
|
|
|
|
}
|
|
|
|
|
|
/* Calculate case desirability score to adjust the length of havoc fuzzing.
|
|
A helper function for fuzz_one(). Maybe some of these constants should
|
|
go into config.h. */
|
|
|
|
static u32 calculate_score(struct queue_entry* q) {
|
|
|
|
u32 avg_exec_us = total_cal_us / total_cal_cycles;
|
|
u32 avg_bitmap_size = total_bitmap_size / total_bitmap_entries;
|
|
u32 perf_score = 100;
|
|
|
|
/* Adjust score based on execution speed of this path, compared to the
|
|
global average. Multiplier ranges from 0.1x to 3x. Fast inputs are
|
|
less expensive to fuzz, so we're giving them more air time. */
|
|
|
|
if (q->exec_us * 0.1 > avg_exec_us) perf_score = 10;
|
|
else if (q->exec_us * 0.25 > avg_exec_us) perf_score = 25;
|
|
else if (q->exec_us * 0.5 > avg_exec_us) perf_score = 50;
|
|
else if (q->exec_us * 0.75 > avg_exec_us) perf_score = 75;
|
|
else if (q->exec_us * 4 < avg_exec_us) perf_score = 300;
|
|
else if (q->exec_us * 3 < avg_exec_us) perf_score = 200;
|
|
else if (q->exec_us * 2 < avg_exec_us) perf_score = 150;
|
|
|
|
/* Adjust score based on bitmap size. The working theory is that better
|
|
coverage translates to better targets. Multiplier from 0.25x to 3x. */
|
|
|
|
if (q->bitmap_size * 0.3 > avg_bitmap_size) perf_score *= 3;
|
|
else if (q->bitmap_size * 0.5 > avg_bitmap_size) perf_score *= 2;
|
|
else if (q->bitmap_size * 0.75 > avg_bitmap_size) perf_score *= 1.5;
|
|
else if (q->bitmap_size * 3 < avg_bitmap_size) perf_score *= 0.25;
|
|
else if (q->bitmap_size * 2 < avg_bitmap_size) perf_score *= 0.5;
|
|
else if (q->bitmap_size * 1.5 < avg_bitmap_size) perf_score *= 0.75;
|
|
|
|
/* Adjust score based on handicap. Handicap is proportional to how late
|
|
in the game we learned about this path. Latecomers are allowed to run
|
|
for a bit longer until they catch up with the rest. */
|
|
|
|
if (q->handicap >= 4) {
|
|
|
|
perf_score *= 4;
|
|
q->handicap -= 4;
|
|
|
|
} else if (q->handicap) {
|
|
|
|
perf_score *= 2;
|
|
q->handicap--;
|
|
|
|
}
|
|
|
|
/* Final adjustment based on input depth, under the assumption that fuzzing
|
|
deeper test cases is more likely to reveal stuff that can't be
|
|
discovered with traditional fuzzers. */
|
|
|
|
switch (q->depth) {
|
|
|
|
case 0 ... 3: break;
|
|
case 4 ... 7: perf_score *= 2; break;
|
|
case 8 ... 13: perf_score *= 3; break;
|
|
case 14 ... 25: perf_score *= 4; break;
|
|
default: perf_score *= 5;
|
|
|
|
}
|
|
|
|
/* Make sure that we don't go over limit. */
|
|
|
|
if (perf_score > HAVOC_MAX_MULT * 100) perf_score = HAVOC_MAX_MULT * 100;
|
|
|
|
return perf_score;
|
|
|
|
}
|
|
|
|
|
|
/* Helper function to see if a particular change (xor_val = old ^ new) could
|
|
be a product of deterministic bit flips with the lengths and stepovers
|
|
attempted by afl-fuzz. This is used to avoid dupes in some of the
|
|
deterministic fuzzing operations that follow bit flips. We also
|
|
return 1 if xor_val is zero, which implies that the old and attempted new
|
|
values are identical and the exec would be a waste of time. */
|
|
|
|
static u8 could_be_bitflip(u32 xor_val) {
|
|
|
|
u32 sh = 0;
|
|
|
|
if (!xor_val) return 1;
|
|
|
|
/* Shift left until first bit set. */
|
|
|
|
while (!(xor_val & 1)) { sh++; xor_val >>= 1; }
|
|
|
|
/* 1-, 2-, and 4-bit patterns are OK anywhere. */
|
|
|
|
if (xor_val == 1 || xor_val == 3 || xor_val == 15) return 1;
|
|
|
|
/* 8-, 16-, and 32-bit patterns are OK only if shift factor is
|
|
divisible by 8, since that's the stepover for these ops. */
|
|
|
|
if (sh & 7) return 0;
|
|
|
|
if (xor_val == 0xff || xor_val == 0xffff || xor_val == 0xffffffff)
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Helper function to see if a particular value is reachable through
|
|
arithmetic operations. Used for similar purposes. */
|
|
|
|
static u8 could_be_arith(u32 old_val, u32 new_val, u8 blen) {
|
|
|
|
u32 i, ov = 0, nv = 0, diffs = 0;
|
|
|
|
if (old_val == new_val) return 1;
|
|
|
|
/* See if one-byte adjustments to any byte could produce this result. */
|
|
|
|
for (i = 0; i < blen; i++) {
|
|
|
|
u8 a = old_val >> (8 * i),
|
|
b = new_val >> (8 * i);
|
|
|
|
if (a != b) { diffs++; ov = a; nv = b; }
|
|
|
|
}
|
|
|
|
/* If only one byte differs and the values are within range, return 1. */
|
|
|
|
if (diffs == 1) {
|
|
|
|
if ((u8)(ov - nv) <= ARITH_MAX ||
|
|
(u8)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
}
|
|
|
|
if (blen == 1) return 0;
|
|
|
|
/* See if two-byte adjustments to any byte would produce this result. */
|
|
|
|
diffs = 0;
|
|
|
|
for (i = 0; i < blen / 2; i++) {
|
|
|
|
u16 a = old_val >> (16 * i),
|
|
b = new_val >> (16 * i);
|
|
|
|
if (a != b) { diffs++; ov = a; nv = b; }
|
|
|
|
}
|
|
|
|
/* If only one word differs and the values are within range, return 1. */
|
|
|
|
if (diffs == 1) {
|
|
|
|
if ((u16)(ov - nv) <= ARITH_MAX ||
|
|
(u16)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
ov = SWAP16(ov); nv = SWAP16(nv);
|
|
|
|
if ((u16)(ov - nv) <= ARITH_MAX ||
|
|
(u16)(nv - ov) <= ARITH_MAX) return 1;
|
|
|
|
}
|
|
|
|
/* Finally, let's do the same thing for dwords. */
|
|
|
|
if (blen == 4) {
|
|
|
|
if ((u32)(old_val - new_val) <= ARITH_MAX ||
|
|
(u32)(new_val - old_val) <= ARITH_MAX) return 1;
|
|
|
|
new_val = SWAP32(new_val);
|
|
old_val = SWAP32(old_val);
|
|
|
|
if ((u32)(old_val - new_val) <= ARITH_MAX ||
|
|
(u32)(new_val - old_val) <= ARITH_MAX) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Last but not least, a similar helper to see if insertion of an
|
|
interesting integer is redundant given the insertions done for
|
|
shorter blen. The last param (check_le) is set if the caller
|
|
already executed LE insertion for current blen and wants to see
|
|
if BE variant passed in new_val is unique. */
|
|
|
|
static u8 could_be_interest(u32 old_val, u32 new_val, u8 blen, u8 check_le) {
|
|
|
|
u32 i, j;
|
|
|
|
if (old_val == new_val) return 1;
|
|
|
|
/* See if one-byte insertions from interesting_8 over old_val could
|
|
produce new_val. */
|
|
|
|
for (i = 0; i < blen; i++) {
|
|
|
|
for (j = 0; j < sizeof(interesting_8); j++) {
|
|
|
|
u32 tval = (old_val & ~(0xff << (i * 8))) |
|
|
(((u8)interesting_8[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Bail out unless we're also asked to examine two-byte LE insertions
|
|
as a preparation for BE attempts. */
|
|
|
|
if (blen == 2 && !check_le) return 0;
|
|
|
|
/* See if two-byte insertions over old_val could give us new_val. */
|
|
|
|
for (i = 0; i < blen - 1; i++) {
|
|
|
|
for (j = 0; j < sizeof(interesting_16) / 2; j++) {
|
|
|
|
u32 tval = (old_val & ~(0xffff << (i * 8))) |
|
|
(((u16)interesting_16[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
/* Continue here only if blen > 2. */
|
|
|
|
if (blen > 2) {
|
|
|
|
tval = (old_val & ~(0xffff << (i * 8))) |
|
|
(SWAP16(interesting_16[j]) << (i * 8));
|
|
|
|
if (new_val == tval) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (blen == 4 && check_le) {
|
|
|
|
/* See if four-byte insertions could produce the same result
|
|
(LE only). */
|
|
|
|
for (j = 0; j < sizeof(interesting_32) / 4; j++)
|
|
if (new_val == (u32)interesting_32[j]) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
/* Take the current entry from the queue, fuzz it for a while. This
|
|
function is a tad too long... returns 0 if fuzzed successfully, 1 if
|
|
skipped or bailed out. */
|
|
|
|
static u8 fuzz_one(char** argv) {
|
|
|
|
s32 len, fd, temp_len, i, j;
|
|
u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0;
|
|
u64 havoc_queued, orig_hit_cnt, new_hit_cnt;
|
|
u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1;
|
|
|
|
u8 ret_val = 1, doing_det = 0;
|
|
|
|
u8 a_collect[MAX_AUTO_EXTRA];
|
|
u32 a_len = 0;
|
|
|
|
#ifdef IGNORE_FINDS
|
|
|
|
/* In IGNORE_FINDS mode, skip any entries that weren't in the
|
|
initial data set. */
|
|
|
|
if (queue_cur->depth > 1) return 1;
|
|
|
|
#else
|
|
|
|
if (pending_favored) {
|
|
|
|
/* If we have any favored, non-fuzzed new arrivals in the queue,
|
|
possibly skip to them at the expense of already-fuzzed or non-favored
|
|
cases. */
|
|
|
|
if ((queue_cur->was_fuzzed || !queue_cur->favored) &&
|
|
UR(100) < SKIP_TO_NEW_PROB) return 1;
|
|
|
|
} else if (!dumb_mode && !queue_cur->favored && queued_paths > 10) {
|
|
|
|
/* Otherwise, still possibly skip non-favored cases, albeit less often.
|
|
The odds of skipping stuff are higher for already-fuzzed inputs and
|
|
lower for never-fuzzed entries. */
|
|
|
|
if (queue_cycle > 1 && !queue_cur->was_fuzzed) {
|
|
|
|
if (UR(100) < SKIP_NFAV_NEW_PROB) return 1;
|
|
|
|
} else {
|
|
|
|
if (UR(100) < SKIP_NFAV_OLD_PROB) return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* ^IGNORE_FINDS */
|
|
|
|
if (not_on_tty) {
|
|
ACTF("Fuzzing test case #%u (%u total, %llu uniq crashes found)...",
|
|
current_entry, queued_paths, unique_crashes);
|
|
fflush(stdout);
|
|
}
|
|
|
|
/* Map the test case into memory. */
|
|
|
|
fd = open(queue_cur->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", queue_cur->fname);
|
|
|
|
len = queue_cur->len;
|
|
|
|
orig_in = in_buf = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
|
|
if (orig_in == MAP_FAILED) PFATAL("Unable to mmap '%s'", queue_cur->fname);
|
|
|
|
close(fd);
|
|
|
|
/* We could mmap() out_buf as MAP_PRIVATE, but we end up clobbering every
|
|
single byte anyway, so it wouldn't give us any performance or memory usage
|
|
benefits. */
|
|
|
|
out_buf = ck_alloc_nozero(len);
|
|
|
|
subseq_tmouts = 0;
|
|
|
|
cur_depth = queue_cur->depth;
|
|
|
|
/*******************************************
|
|
* CALIBRATION (only if failed earlier on) *
|
|
*******************************************/
|
|
|
|
if (queue_cur->cal_failed) {
|
|
|
|
u8 res = FAULT_TMOUT;
|
|
|
|
if (queue_cur->cal_failed < CAL_CHANCES) {
|
|
|
|
/* Reset exec_cksum to tell calibrate_case to re-execute the testcase
|
|
avoiding the usage of an invalid trace_bits.
|
|
For more info: https://github.com/AFLplusplus/AFLplusplus/pull/425 */
|
|
|
|
queue_cur->exec_cksum = 0;
|
|
|
|
res = calibrate_case(argv, queue_cur, in_buf, queue_cycle - 1, 0);
|
|
|
|
if (res == FAULT_ERROR)
|
|
FATAL("Unable to execute target application");
|
|
|
|
}
|
|
|
|
if (stop_soon || res != crash_mode) {
|
|
cur_skipped_paths++;
|
|
goto abandon_entry;
|
|
}
|
|
|
|
}
|
|
|
|
/************
|
|
* TRIMMING *
|
|
************/
|
|
|
|
if (!dumb_mode && !queue_cur->trim_done) {
|
|
|
|
u8 res = trim_case(argv, queue_cur, in_buf);
|
|
|
|
if (res == FAULT_ERROR)
|
|
FATAL("Unable to execute target application");
|
|
|
|
if (stop_soon) {
|
|
cur_skipped_paths++;
|
|
goto abandon_entry;
|
|
}
|
|
|
|
/* Don't retry trimming, even if it failed. */
|
|
|
|
queue_cur->trim_done = 1;
|
|
|
|
if (len != queue_cur->len) len = queue_cur->len;
|
|
|
|
}
|
|
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/*********************
|
|
* PERFORMANCE SCORE *
|
|
*********************/
|
|
|
|
orig_perf = perf_score = calculate_score(queue_cur);
|
|
|
|
/* Skip right away if -d is given, if we have done deterministic fuzzing on
|
|
this entry ourselves (was_fuzzed), or if it has gone through deterministic
|
|
testing in earlier, resumed runs (passed_det). */
|
|
|
|
if (skip_deterministic || queue_cur->was_fuzzed || queue_cur->passed_det)
|
|
goto havoc_stage;
|
|
|
|
/* Skip deterministic fuzzing if exec path checksum puts this out of scope
|
|
for this master instance. */
|
|
|
|
if (master_max && (queue_cur->exec_cksum % master_max) != master_id - 1)
|
|
goto havoc_stage;
|
|
|
|
doing_det = 1;
|
|
|
|
/*********************************************
|
|
* SIMPLE BITFLIP (+dictionary construction) *
|
|
*********************************************/
|
|
|
|
#define FLIP_BIT(_ar, _b) do { \
|
|
u8* _arf = (u8*)(_ar); \
|
|
u32 _bf = (_b); \
|
|
_arf[(_bf) >> 3] ^= (128 >> ((_bf) & 7)); \
|
|
} while (0)
|
|
|
|
/* Single walking bit. */
|
|
|
|
stage_short = "flip1";
|
|
stage_max = len << 3;
|
|
stage_name = "bitflip 1/1";
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
prev_cksum = queue_cur->exec_cksum;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
|
|
/* While flipping the least significant bit in every byte, pull of an extra
|
|
trick to detect possible syntax tokens. In essence, the idea is that if
|
|
you have a binary blob like this:
|
|
|
|
xxxxxxxxIHDRxxxxxxxx
|
|
|
|
...and changing the leading and trailing bytes causes variable or no
|
|
changes in program flow, but touching any character in the "IHDR" string
|
|
always produces the same, distinctive path, it's highly likely that
|
|
"IHDR" is an atomically-checked magic value of special significance to
|
|
the fuzzed format.
|
|
|
|
We do this here, rather than as a separate stage, because it's a nice
|
|
way to keep the operation approximately "free" (i.e., no extra execs).
|
|
|
|
Empirically, performing the check when flipping the least significant bit
|
|
is advantageous, compared to doing it at the time of more disruptive
|
|
changes, where the program flow may be affected in more violent ways.
|
|
|
|
The caveat is that we won't generate dictionaries in the -d mode or -S
|
|
mode - but that's probably a fair trade-off.
|
|
|
|
This won't work particularly well with paths that exhibit variable
|
|
behavior, but fails gracefully, so we'll carry out the checks anyway.
|
|
|
|
*/
|
|
|
|
if (!dumb_mode && (stage_cur & 7) == 7) {
|
|
|
|
u32 cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
|
|
if (stage_cur == stage_max - 1 && cksum == prev_cksum) {
|
|
|
|
/* If at end of file and we are still collecting a string, grab the
|
|
final character and force output. */
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
a_len++;
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
} else if (cksum != prev_cksum) {
|
|
|
|
/* Otherwise, if the checksum has changed, see if we have something
|
|
worthwhile queued up, and collect that if the answer is yes. */
|
|
|
|
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
|
|
maybe_add_auto(a_collect, a_len);
|
|
|
|
a_len = 0;
|
|
prev_cksum = cksum;
|
|
|
|
}
|
|
|
|
/* Continue collecting string, but only if the bit flip actually made
|
|
any difference - we don't want no-op tokens. */
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
|
|
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
|
|
a_len++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP1] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP1] += stage_max;
|
|
|
|
/* Two walking bits. */
|
|
|
|
stage_name = "bitflip 2/1";
|
|
stage_short = "flip2";
|
|
stage_max = (len << 3) - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP2] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP2] += stage_max;
|
|
|
|
/* Four walking bits. */
|
|
|
|
stage_name = "bitflip 4/1";
|
|
stage_short = "flip4";
|
|
stage_max = (len << 3) - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
stage_cur_byte = stage_cur >> 3;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
FLIP_BIT(out_buf, stage_cur);
|
|
FLIP_BIT(out_buf, stage_cur + 1);
|
|
FLIP_BIT(out_buf, stage_cur + 2);
|
|
FLIP_BIT(out_buf, stage_cur + 3);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP4] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP4] += stage_max;
|
|
|
|
/* Effector map setup. These macros calculate:
|
|
|
|
EFF_APOS - position of a particular file offset in the map.
|
|
EFF_ALEN - length of a map with a particular number of bytes.
|
|
EFF_SPAN_ALEN - map span for a sequence of bytes.
|
|
|
|
*/
|
|
|
|
#define EFF_APOS(_p) ((_p) >> EFF_MAP_SCALE2)
|
|
#define EFF_REM(_x) ((_x) & ((1 << EFF_MAP_SCALE2) - 1))
|
|
#define EFF_ALEN(_l) (EFF_APOS(_l) + !!EFF_REM(_l))
|
|
#define EFF_SPAN_ALEN(_p, _l) (EFF_APOS((_p) + (_l) - 1) - EFF_APOS(_p) + 1)
|
|
|
|
/* Initialize effector map for the next step (see comments below). Always
|
|
flag first and last byte as doing something. */
|
|
|
|
eff_map = ck_alloc(EFF_ALEN(len));
|
|
eff_map[0] = 1;
|
|
|
|
if (EFF_APOS(len - 1) != 0) {
|
|
eff_map[EFF_APOS(len - 1)] = 1;
|
|
eff_cnt++;
|
|
}
|
|
|
|
/* Walking byte. */
|
|
|
|
stage_name = "bitflip 8/8";
|
|
stage_short = "flip8";
|
|
stage_max = len;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
stage_cur_byte = stage_cur;
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
/* We also use this stage to pull off a simple trick: we identify
|
|
bytes that seem to have no effect on the current execution path
|
|
even when fully flipped - and we skip them during more expensive
|
|
deterministic stages, such as arithmetics or known ints. */
|
|
|
|
if (!eff_map[EFF_APOS(stage_cur)]) {
|
|
|
|
u32 cksum;
|
|
|
|
/* If in dumb mode or if the file is very short, just flag everything
|
|
without wasting time on checksums. */
|
|
|
|
if (!dumb_mode && len >= EFF_MIN_LEN)
|
|
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
|
|
else
|
|
cksum = ~queue_cur->exec_cksum;
|
|
|
|
if (cksum != queue_cur->exec_cksum) {
|
|
eff_map[EFF_APOS(stage_cur)] = 1;
|
|
eff_cnt++;
|
|
}
|
|
|
|
}
|
|
|
|
out_buf[stage_cur] ^= 0xFF;
|
|
|
|
}
|
|
|
|
/* If the effector map is more than EFF_MAX_PERC dense, just flag the
|
|
whole thing as worth fuzzing, since we wouldn't be saving much time
|
|
anyway. */
|
|
|
|
if (eff_cnt != EFF_ALEN(len) &&
|
|
eff_cnt * 100 / EFF_ALEN(len) > EFF_MAX_PERC) {
|
|
|
|
memset(eff_map, 1, EFF_ALEN(len));
|
|
|
|
blocks_eff_select += EFF_ALEN(len);
|
|
|
|
} else {
|
|
|
|
blocks_eff_select += eff_cnt;
|
|
|
|
}
|
|
|
|
blocks_eff_total += EFF_ALEN(len);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP8] += stage_max;
|
|
|
|
/* Two walking bytes. */
|
|
|
|
if (len < 2) goto skip_bitflip;
|
|
|
|
stage_name = "bitflip 16/8";
|
|
stage_short = "flip16";
|
|
stage_cur = 0;
|
|
stage_max = len - 1;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; i++) {
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
stage_max--;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
*(u16*)(out_buf + i) ^= 0xFFFF;
|
|
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP16] += stage_max;
|
|
|
|
if (len < 4) goto skip_bitflip;
|
|
|
|
/* Four walking bytes. */
|
|
|
|
stage_name = "bitflip 32/8";
|
|
stage_short = "flip32";
|
|
stage_cur = 0;
|
|
stage_max = len - 3;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; i++) {
|
|
|
|
/* Let's consult the effector map... */
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
stage_max--;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_FLIP32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_FLIP32] += stage_max;
|
|
|
|
skip_bitflip:
|
|
|
|
if (no_arith) goto skip_arith;
|
|
|
|
/**********************
|
|
* ARITHMETIC INC/DEC *
|
|
**********************/
|
|
|
|
/* 8-bit arithmetics. */
|
|
|
|
stage_name = "arith 8/8";
|
|
stage_short = "arith8";
|
|
stage_cur = 0;
|
|
stage_max = 2 * len * ARITH_MAX;
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
stage_max -= 2 * ARITH_MAX;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; j++) {
|
|
|
|
u8 r = orig ^ (orig + j);
|
|
|
|
/* Do arithmetic operations only if the result couldn't be a product
|
|
of a bitflip. */
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = j;
|
|
out_buf[i] = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
r = orig ^ (orig - j);
|
|
|
|
if (!could_be_bitflip(r)) {
|
|
|
|
stage_cur_val = -j;
|
|
out_buf[i] = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
out_buf[i] = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH8] += stage_max;
|
|
|
|
/* 16-bit arithmetics, both endians. */
|
|
|
|
if (len < 2) goto skip_arith;
|
|
|
|
stage_name = "arith 16/8";
|
|
stage_short = "arith16";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 1) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; i++) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; j++) {
|
|
|
|
u16 r1 = orig ^ (orig + j),
|
|
r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP16(SWAP16(orig) + j),
|
|
r4 = orig ^ SWAP16(SWAP16(orig) - j);
|
|
|
|
/* Try little endian addition and subtraction first. Do it only
|
|
if the operation would affect more than one byte (hence the
|
|
& 0xff overflow checks) and if it couldn't be a product of
|
|
a bitflip. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xff) + j > 0xff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((orig & 0xff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
/* Big endian comes next. Same deal. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
|
|
if ((orig >> 8) + j > 0xff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((orig >> 8) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH16] += stage_max;
|
|
|
|
/* 32-bit arithmetics, both endians. */
|
|
|
|
if (len < 4) goto skip_arith;
|
|
|
|
stage_name = "arith 32/8";
|
|
stage_short = "arith32";
|
|
stage_cur = 0;
|
|
stage_max = 4 * (len - 3) * ARITH_MAX;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; i++) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
stage_max -= 4 * ARITH_MAX;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 1; j <= ARITH_MAX; j++) {
|
|
|
|
u32 r1 = orig ^ (orig + j),
|
|
r2 = orig ^ (orig - j),
|
|
r3 = orig ^ SWAP32(SWAP32(orig) + j),
|
|
r4 = orig ^ SWAP32(SWAP32(orig) - j);
|
|
|
|
/* Little endian first. Same deal as with 16-bit: we only want to
|
|
try if the operation would have effect on more than two bytes. */
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
if ((orig & 0xffff) + j > 0xffff && !could_be_bitflip(r1)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = orig + j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((orig & 0xffff) < j && !could_be_bitflip(r2)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = orig - j;
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
/* Big endian next. */
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
if ((SWAP32(orig) & 0xffff) + j > 0xffff && !could_be_bitflip(r3)) {
|
|
|
|
stage_cur_val = j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) + j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((SWAP32(orig) & 0xffff) < j && !could_be_bitflip(r4)) {
|
|
|
|
stage_cur_val = -j;
|
|
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) - j);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_ARITH32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_ARITH32] += stage_max;
|
|
|
|
skip_arith:
|
|
|
|
/**********************
|
|
* INTERESTING VALUES *
|
|
**********************/
|
|
|
|
stage_name = "interest 8/8";
|
|
stage_short = "int8";
|
|
stage_cur = 0;
|
|
stage_max = len * sizeof(interesting_8);
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
/* Setting 8-bit integers. */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
u8 orig = out_buf[i];
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)]) {
|
|
stage_max -= sizeof(interesting_8);
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_8); j++) {
|
|
|
|
/* Skip if the value could be a product of bitflips or arithmetics. */
|
|
|
|
if (could_be_bitflip(orig ^ (u8)interesting_8[j]) ||
|
|
could_be_arith(orig, (u8)interesting_8[j], 1)) {
|
|
stage_max--;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_val = interesting_8[j];
|
|
out_buf[i] = interesting_8[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
out_buf[i] = orig;
|
|
stage_cur++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST8] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST8] += stage_max;
|
|
|
|
/* Setting 16-bit integers, both endians. */
|
|
|
|
if (no_arith || len < 2) goto skip_interest;
|
|
|
|
stage_name = "interest 16/8";
|
|
stage_short = "int16";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 1) * (sizeof(interesting_16) >> 1);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 1; i++) {
|
|
|
|
u16 orig = *(u16*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
|
|
stage_max -= sizeof(interesting_16);
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_16) / 2; j++) {
|
|
|
|
stage_cur_val = interesting_16[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or single-byte interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u16)interesting_16[j]) &&
|
|
!could_be_arith(orig, (u16)interesting_16[j], 2) &&
|
|
!could_be_interest(orig, (u16)interesting_16[j], 2, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u16*)(out_buf + i) = interesting_16[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((u16)interesting_16[j] != SWAP16(interesting_16[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP16(interesting_16[j])) &&
|
|
!could_be_arith(orig, SWAP16(interesting_16[j]), 2) &&
|
|
!could_be_interest(orig, SWAP16(interesting_16[j]), 2, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u16*)(out_buf + i) = SWAP16(interesting_16[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
}
|
|
|
|
*(u16*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST16] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST16] += stage_max;
|
|
|
|
if (len < 4) goto skip_interest;
|
|
|
|
/* Setting 32-bit integers, both endians. */
|
|
|
|
stage_name = "interest 32/8";
|
|
stage_short = "int32";
|
|
stage_cur = 0;
|
|
stage_max = 2 * (len - 3) * (sizeof(interesting_32) >> 2);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len - 3; i++) {
|
|
|
|
u32 orig = *(u32*)(out_buf + i);
|
|
|
|
/* Let's consult the effector map... */
|
|
|
|
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
|
|
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
|
|
stage_max -= sizeof(interesting_32) >> 1;
|
|
continue;
|
|
}
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < sizeof(interesting_32) / 4; j++) {
|
|
|
|
stage_cur_val = interesting_32[j];
|
|
|
|
/* Skip if this could be a product of a bitflip, arithmetics,
|
|
or word interesting value insertion. */
|
|
|
|
if (!could_be_bitflip(orig ^ (u32)interesting_32[j]) &&
|
|
!could_be_arith(orig, interesting_32[j], 4) &&
|
|
!could_be_interest(orig, interesting_32[j], 4, 0)) {
|
|
|
|
stage_val_type = STAGE_VAL_LE;
|
|
|
|
*(u32*)(out_buf + i) = interesting_32[j];
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
if ((u32)interesting_32[j] != SWAP32(interesting_32[j]) &&
|
|
!could_be_bitflip(orig ^ SWAP32(interesting_32[j])) &&
|
|
!could_be_arith(orig, SWAP32(interesting_32[j]), 4) &&
|
|
!could_be_interest(orig, SWAP32(interesting_32[j]), 4, 1)) {
|
|
|
|
stage_val_type = STAGE_VAL_BE;
|
|
|
|
*(u32*)(out_buf + i) = SWAP32(interesting_32[j]);
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
stage_cur++;
|
|
|
|
} else stage_max--;
|
|
|
|
}
|
|
|
|
*(u32*)(out_buf + i) = orig;
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_INTEREST32] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_INTEREST32] += stage_max;
|
|
|
|
skip_interest:
|
|
|
|
/********************
|
|
* DICTIONARY STUFF *
|
|
********************/
|
|
|
|
if (!extras_cnt) goto skip_user_extras;
|
|
|
|
/* Overwrite with user-supplied extras. */
|
|
|
|
stage_name = "user extras (over)";
|
|
stage_short = "ext_UO";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
/* Extras are sorted by size, from smallest to largest. This means
|
|
that we don't have to worry about restoring the buffer in
|
|
between writes at a particular offset determined by the outer
|
|
loop. */
|
|
|
|
for (j = 0; j < extras_cnt; j++) {
|
|
|
|
/* Skip extras probabilistically if extras_cnt > MAX_DET_EXTRAS. Also
|
|
skip them if there's no room to insert the payload, if the token
|
|
is redundant, or if its entire span has no bytes set in the effector
|
|
map. */
|
|
|
|
if ((extras_cnt > MAX_DET_EXTRAS && UR(extras_cnt) >= MAX_DET_EXTRAS) ||
|
|
extras[j].len > len - i ||
|
|
!memcmp(extras[j].data, out_buf + i, extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, extras[j].len))) {
|
|
|
|
stage_max--;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = extras[j].len;
|
|
memcpy(out_buf + i, extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
stage_cur++;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UO] += stage_max;
|
|
|
|
/* Insertion of user-supplied extras. */
|
|
|
|
stage_name = "user extras (insert)";
|
|
stage_short = "ext_UI";
|
|
stage_cur = 0;
|
|
stage_max = extras_cnt * (len + 1);
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
ex_tmp = ck_alloc(len + MAX_DICT_FILE);
|
|
|
|
for (i = 0; i <= len; i++) {
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < extras_cnt; j++) {
|
|
|
|
if (len + extras[j].len > MAX_FILE) {
|
|
stage_max--;
|
|
continue;
|
|
}
|
|
|
|
/* Insert token */
|
|
memcpy(ex_tmp + i, extras[j].data, extras[j].len);
|
|
|
|
/* Copy tail */
|
|
memcpy(ex_tmp + i + extras[j].len, out_buf + i, len - i);
|
|
|
|
if (common_fuzz_stuff(argv, ex_tmp, len + extras[j].len)) {
|
|
ck_free(ex_tmp);
|
|
goto abandon_entry;
|
|
}
|
|
|
|
stage_cur++;
|
|
|
|
}
|
|
|
|
/* Copy head */
|
|
ex_tmp[i] = out_buf[i];
|
|
|
|
}
|
|
|
|
ck_free(ex_tmp);
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_UI] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_UI] += stage_max;
|
|
|
|
skip_user_extras:
|
|
|
|
if (!a_extras_cnt) goto skip_extras;
|
|
|
|
stage_name = "auto extras (over)";
|
|
stage_short = "ext_AO";
|
|
stage_cur = 0;
|
|
stage_max = MIN(a_extras_cnt, USE_AUTO_EXTRAS) * len;
|
|
|
|
stage_val_type = STAGE_VAL_NONE;
|
|
|
|
orig_hit_cnt = new_hit_cnt;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
u32 last_len = 0;
|
|
|
|
stage_cur_byte = i;
|
|
|
|
for (j = 0; j < MIN(a_extras_cnt, USE_AUTO_EXTRAS); j++) {
|
|
|
|
/* See the comment in the earlier code; extras are sorted by size. */
|
|
|
|
if (a_extras[j].len > len - i ||
|
|
!memcmp(a_extras[j].data, out_buf + i, a_extras[j].len) ||
|
|
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, a_extras[j].len))) {
|
|
|
|
stage_max--;
|
|
continue;
|
|
|
|
}
|
|
|
|
last_len = a_extras[j].len;
|
|
memcpy(out_buf + i, a_extras[j].data, last_len);
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
|
|
|
|
stage_cur++;
|
|
|
|
}
|
|
|
|
/* Restore all the clobbered memory. */
|
|
memcpy(out_buf + i, in_buf + i, last_len);
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
stage_finds[STAGE_EXTRAS_AO] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_EXTRAS_AO] += stage_max;
|
|
|
|
skip_extras:
|
|
|
|
/* If we made this to here without jumping to havoc_stage or abandon_entry,
|
|
we're properly done with deterministic steps and can mark it as such
|
|
in the .state/ directory. */
|
|
|
|
if (!queue_cur->passed_det) mark_as_det_done(queue_cur);
|
|
|
|
/****************
|
|
* RANDOM HAVOC *
|
|
****************/
|
|
|
|
havoc_stage:
|
|
|
|
stage_cur_byte = -1;
|
|
|
|
/* The havoc stage mutation code is also invoked when splicing files; if the
|
|
splice_cycle variable is set, generate different descriptions and such. */
|
|
|
|
if (!splice_cycle) {
|
|
|
|
stage_name = "havoc";
|
|
stage_short = "havoc";
|
|
stage_max = (doing_det ? HAVOC_CYCLES_INIT : HAVOC_CYCLES) *
|
|
perf_score / havoc_div / 100;
|
|
|
|
} else {
|
|
|
|
static u8 tmp[32];
|
|
|
|
perf_score = orig_perf;
|
|
|
|
sprintf(tmp, "splice %u", splice_cycle);
|
|
stage_name = tmp;
|
|
stage_short = "splice";
|
|
stage_max = SPLICE_HAVOC * perf_score / havoc_div / 100;
|
|
|
|
}
|
|
|
|
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
|
|
|
|
temp_len = len;
|
|
|
|
orig_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
/* We essentially just do several thousand runs (depending on perf_score)
|
|
where we take the input file and make random stacked tweaks. */
|
|
|
|
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
|
|
|
|
u32 use_stacking = 1 << (1 + UR(HAVOC_STACK_POW2));
|
|
|
|
stage_cur_val = use_stacking;
|
|
|
|
for (i = 0; i < use_stacking; i++) {
|
|
|
|
switch (UR(15 + ((extras_cnt + a_extras_cnt) ? 2 : 0))) {
|
|
|
|
case 0:
|
|
|
|
/* Flip a single bit somewhere. Spooky! */
|
|
|
|
FLIP_BIT(out_buf, UR(temp_len << 3));
|
|
break;
|
|
|
|
case 1:
|
|
|
|
/* Set byte to interesting value. */
|
|
|
|
out_buf[UR(temp_len)] = interesting_8[UR(sizeof(interesting_8))];
|
|
break;
|
|
|
|
case 2:
|
|
|
|
/* Set word to interesting value, randomly choosing endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) =
|
|
interesting_16[UR(sizeof(interesting_16) >> 1)];
|
|
|
|
} else {
|
|
|
|
*(u16*)(out_buf + UR(temp_len - 1)) = SWAP16(
|
|
interesting_16[UR(sizeof(interesting_16) >> 1)]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
/* Set dword to interesting value, randomly choosing endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) =
|
|
interesting_32[UR(sizeof(interesting_32) >> 2)];
|
|
|
|
} else {
|
|
|
|
*(u32*)(out_buf + UR(temp_len - 3)) = SWAP32(
|
|
interesting_32[UR(sizeof(interesting_32) >> 2)]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
/* Randomly subtract from byte. */
|
|
|
|
out_buf[UR(temp_len)] -= 1 + UR(ARITH_MAX);
|
|
break;
|
|
|
|
case 5:
|
|
|
|
/* Randomly add to byte. */
|
|
|
|
out_buf[UR(temp_len)] += 1 + UR(ARITH_MAX);
|
|
break;
|
|
|
|
case 6:
|
|
|
|
/* Randomly subtract from word, random endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
|
|
*(u16*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
/* Randomly add to word, random endian. */
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
|
|
*(u16*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 1);
|
|
u16 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u16*)(out_buf + pos) =
|
|
SWAP16(SWAP16(*(u16*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
/* Randomly subtract from dword, random endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
|
|
*(u32*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) - num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 9:
|
|
|
|
/* Randomly add to dword, random endian. */
|
|
|
|
if (temp_len < 4) break;
|
|
|
|
if (UR(2)) {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
|
|
*(u32*)(out_buf + pos) += 1 + UR(ARITH_MAX);
|
|
|
|
} else {
|
|
|
|
u32 pos = UR(temp_len - 3);
|
|
u32 num = 1 + UR(ARITH_MAX);
|
|
|
|
*(u32*)(out_buf + pos) =
|
|
SWAP32(SWAP32(*(u32*)(out_buf + pos)) + num);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 10:
|
|
|
|
/* Just set a random byte to a random value. Because,
|
|
why not. We use XOR with 1-255 to eliminate the
|
|
possibility of a no-op. */
|
|
|
|
out_buf[UR(temp_len)] ^= 1 + UR(255);
|
|
break;
|
|
|
|
case 11 ... 12: {
|
|
|
|
/* Delete bytes. We're making this a bit more likely
|
|
than insertion (the next option) in hopes of keeping
|
|
files reasonably small. */
|
|
|
|
u32 del_from, del_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
/* Don't delete too much. */
|
|
|
|
del_len = choose_block_len(temp_len - 1);
|
|
|
|
del_from = UR(temp_len - del_len + 1);
|
|
|
|
memmove(out_buf + del_from, out_buf + del_from + del_len,
|
|
temp_len - del_from - del_len);
|
|
|
|
temp_len -= del_len;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 13:
|
|
|
|
if (temp_len + HAVOC_BLK_XL < MAX_FILE) {
|
|
|
|
/* Clone bytes (75%) or insert a block of constant bytes (25%). */
|
|
|
|
u8 actually_clone = UR(4);
|
|
u32 clone_from, clone_to, clone_len;
|
|
u8* new_buf;
|
|
|
|
if (actually_clone) {
|
|
|
|
clone_len = choose_block_len(temp_len);
|
|
clone_from = UR(temp_len - clone_len + 1);
|
|
|
|
} else {
|
|
|
|
clone_len = choose_block_len(HAVOC_BLK_XL);
|
|
clone_from = 0;
|
|
|
|
}
|
|
|
|
clone_to = UR(temp_len);
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + clone_len);
|
|
|
|
/* Head */
|
|
|
|
memcpy(new_buf, out_buf, clone_to);
|
|
|
|
/* Inserted part */
|
|
|
|
if (actually_clone)
|
|
memcpy(new_buf + clone_to, out_buf + clone_from, clone_len);
|
|
else
|
|
memset(new_buf + clone_to,
|
|
UR(2) ? UR(256) : out_buf[UR(temp_len)], clone_len);
|
|
|
|
/* Tail */
|
|
memcpy(new_buf + clone_to + clone_len, out_buf + clone_to,
|
|
temp_len - clone_to);
|
|
|
|
ck_free(out_buf);
|
|
out_buf = new_buf;
|
|
temp_len += clone_len;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 14: {
|
|
|
|
/* Overwrite bytes with a randomly selected chunk (75%) or fixed
|
|
bytes (25%). */
|
|
|
|
u32 copy_from, copy_to, copy_len;
|
|
|
|
if (temp_len < 2) break;
|
|
|
|
copy_len = choose_block_len(temp_len - 1);
|
|
|
|
copy_from = UR(temp_len - copy_len + 1);
|
|
copy_to = UR(temp_len - copy_len + 1);
|
|
|
|
if (UR(4)) {
|
|
|
|
if (copy_from != copy_to)
|
|
memmove(out_buf + copy_to, out_buf + copy_from, copy_len);
|
|
|
|
} else memset(out_buf + copy_to,
|
|
UR(2) ? UR(256) : out_buf[UR(temp_len)], copy_len);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* Values 15 and 16 can be selected only if there are any extras
|
|
present in the dictionaries. */
|
|
|
|
case 15: {
|
|
|
|
/* Overwrite bytes with an extra. */
|
|
|
|
if (!extras_cnt || (a_extras_cnt && UR(2))) {
|
|
|
|
/* No user-specified extras or odds in our favor. Let's use an
|
|
auto-detected one. */
|
|
|
|
u32 use_extra = UR(a_extras_cnt);
|
|
u32 extra_len = a_extras[use_extra].len;
|
|
u32 insert_at;
|
|
|
|
if (extra_len > temp_len) break;
|
|
|
|
insert_at = UR(temp_len - extra_len + 1);
|
|
memcpy(out_buf + insert_at, a_extras[use_extra].data, extra_len);
|
|
|
|
} else {
|
|
|
|
/* No auto extras or odds in our favor. Use the dictionary. */
|
|
|
|
u32 use_extra = UR(extras_cnt);
|
|
u32 extra_len = extras[use_extra].len;
|
|
u32 insert_at;
|
|
|
|
if (extra_len > temp_len) break;
|
|
|
|
insert_at = UR(temp_len - extra_len + 1);
|
|
memcpy(out_buf + insert_at, extras[use_extra].data, extra_len);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 16: {
|
|
|
|
u32 use_extra, extra_len, insert_at = UR(temp_len + 1);
|
|
u8* new_buf;
|
|
|
|
/* Insert an extra. Do the same dice-rolling stuff as for the
|
|
previous case. */
|
|
|
|
if (!extras_cnt || (a_extras_cnt && UR(2))) {
|
|
|
|
use_extra = UR(a_extras_cnt);
|
|
extra_len = a_extras[use_extra].len;
|
|
|
|
if (temp_len + extra_len >= MAX_FILE) break;
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + extra_len);
|
|
|
|
/* Head */
|
|
memcpy(new_buf, out_buf, insert_at);
|
|
|
|
/* Inserted part */
|
|
memcpy(new_buf + insert_at, a_extras[use_extra].data, extra_len);
|
|
|
|
} else {
|
|
|
|
use_extra = UR(extras_cnt);
|
|
extra_len = extras[use_extra].len;
|
|
|
|
if (temp_len + extra_len >= MAX_FILE) break;
|
|
|
|
new_buf = ck_alloc_nozero(temp_len + extra_len);
|
|
|
|
/* Head */
|
|
memcpy(new_buf, out_buf, insert_at);
|
|
|
|
/* Inserted part */
|
|
memcpy(new_buf + insert_at, extras[use_extra].data, extra_len);
|
|
|
|
}
|
|
|
|
/* Tail */
|
|
memcpy(new_buf + insert_at + extra_len, out_buf + insert_at,
|
|
temp_len - insert_at);
|
|
|
|
ck_free(out_buf);
|
|
out_buf = new_buf;
|
|
temp_len += extra_len;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (common_fuzz_stuff(argv, out_buf, temp_len))
|
|
goto abandon_entry;
|
|
|
|
/* out_buf might have been mangled a bit, so let's restore it to its
|
|
original size and shape. */
|
|
|
|
if (temp_len < len) out_buf = ck_realloc(out_buf, len);
|
|
temp_len = len;
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
/* If we're finding new stuff, let's run for a bit longer, limits
|
|
permitting. */
|
|
|
|
if (queued_paths != havoc_queued) {
|
|
|
|
if (perf_score <= HAVOC_MAX_MULT * 100) {
|
|
stage_max *= 2;
|
|
perf_score *= 2;
|
|
}
|
|
|
|
havoc_queued = queued_paths;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
new_hit_cnt = queued_paths + unique_crashes;
|
|
|
|
if (!splice_cycle) {
|
|
stage_finds[STAGE_HAVOC] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_HAVOC] += stage_max;
|
|
} else {
|
|
stage_finds[STAGE_SPLICE] += new_hit_cnt - orig_hit_cnt;
|
|
stage_cycles[STAGE_SPLICE] += stage_max;
|
|
}
|
|
|
|
#ifndef IGNORE_FINDS
|
|
|
|
/************
|
|
* SPLICING *
|
|
************/
|
|
|
|
/* This is a last-resort strategy triggered by a full round with no findings.
|
|
It takes the current input file, randomly selects another input, and
|
|
splices them together at some offset, then relies on the havoc
|
|
code to mutate that blob. */
|
|
|
|
retry_splicing:
|
|
|
|
if (use_splicing && splice_cycle++ < SPLICE_CYCLES &&
|
|
queued_paths > 1 && queue_cur->len > 1) {
|
|
|
|
struct queue_entry* target;
|
|
u32 tid, split_at;
|
|
u8* new_buf;
|
|
s32 f_diff, l_diff;
|
|
|
|
/* First of all, if we've modified in_buf for havoc, let's clean that
|
|
up... */
|
|
|
|
if (in_buf != orig_in) {
|
|
ck_free(in_buf);
|
|
in_buf = orig_in;
|
|
len = queue_cur->len;
|
|
}
|
|
|
|
/* Pick a random queue entry and seek to it. Don't splice with yourself. */
|
|
|
|
do { tid = UR(queued_paths); } while (tid == current_entry);
|
|
|
|
splicing_with = tid;
|
|
target = queue;
|
|
|
|
while (tid >= 100) { target = target->next_100; tid -= 100; }
|
|
while (tid--) target = target->next;
|
|
|
|
/* Make sure that the target has a reasonable length. */
|
|
|
|
while (target && (target->len < 2 || target == queue_cur)) {
|
|
target = target->next;
|
|
splicing_with++;
|
|
}
|
|
|
|
if (!target) goto retry_splicing;
|
|
|
|
/* Read the testcase into a new buffer. */
|
|
|
|
fd = open(target->fname, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", target->fname);
|
|
|
|
new_buf = ck_alloc_nozero(target->len);
|
|
|
|
ck_read(fd, new_buf, target->len, target->fname);
|
|
|
|
close(fd);
|
|
|
|
/* Find a suitable splicing location, somewhere between the first and
|
|
the last differing byte. Bail out if the difference is just a single
|
|
byte or so. */
|
|
|
|
locate_diffs(in_buf, new_buf, MIN(len, target->len), &f_diff, &l_diff);
|
|
|
|
if (f_diff < 0 || l_diff < 2 || f_diff == l_diff) {
|
|
ck_free(new_buf);
|
|
goto retry_splicing;
|
|
}
|
|
|
|
/* Split somewhere between the first and last differing byte. */
|
|
|
|
split_at = f_diff + UR(l_diff - f_diff);
|
|
|
|
/* Do the thing. */
|
|
|
|
len = target->len;
|
|
memcpy(new_buf, in_buf, split_at);
|
|
in_buf = new_buf;
|
|
|
|
ck_free(out_buf);
|
|
out_buf = ck_alloc_nozero(len);
|
|
memcpy(out_buf, in_buf, len);
|
|
|
|
goto havoc_stage;
|
|
|
|
}
|
|
|
|
#endif /* !IGNORE_FINDS */
|
|
|
|
ret_val = 0;
|
|
|
|
abandon_entry:
|
|
|
|
splicing_with = -1;
|
|
|
|
/* Update pending_not_fuzzed count if we made it through the calibration
|
|
cycle and have not seen this entry before. */
|
|
|
|
if (!stop_soon && !queue_cur->cal_failed && !queue_cur->was_fuzzed) {
|
|
queue_cur->was_fuzzed = 1;
|
|
pending_not_fuzzed--;
|
|
if (queue_cur->favored) pending_favored--;
|
|
}
|
|
|
|
munmap(orig_in, queue_cur->len);
|
|
|
|
if (in_buf != orig_in) ck_free(in_buf);
|
|
ck_free(out_buf);
|
|
ck_free(eff_map);
|
|
|
|
return ret_val;
|
|
|
|
#undef FLIP_BIT
|
|
|
|
}
|
|
|
|
|
|
/* Grab interesting test cases from other fuzzers. */
|
|
|
|
static void sync_fuzzers(char** argv) {
|
|
|
|
DIR* sd;
|
|
struct dirent* sd_ent;
|
|
u32 sync_cnt = 0;
|
|
|
|
sd = opendir(sync_dir);
|
|
if (!sd) PFATAL("Unable to open '%s'", sync_dir);
|
|
|
|
stage_max = stage_cur = 0;
|
|
cur_depth = 0;
|
|
|
|
/* Look at the entries created for every other fuzzer in the sync directory. */
|
|
|
|
while ((sd_ent = readdir(sd))) {
|
|
|
|
static u8 stage_tmp[128];
|
|
|
|
DIR* qd;
|
|
struct dirent* qd_ent;
|
|
u8 *qd_path, *qd_synced_path;
|
|
u32 min_accept = 0, next_min_accept;
|
|
|
|
s32 id_fd;
|
|
|
|
/* Skip dot files and our own output directory. */
|
|
|
|
if (sd_ent->d_name[0] == '.' || !strcmp(sync_id, sd_ent->d_name)) continue;
|
|
|
|
/* Skip anything that doesn't have a queue/ subdirectory. */
|
|
|
|
qd_path = alloc_printf("%s/%s/queue", sync_dir, sd_ent->d_name);
|
|
|
|
if (!(qd = opendir(qd_path))) {
|
|
ck_free(qd_path);
|
|
continue;
|
|
}
|
|
|
|
/* Retrieve the ID of the last seen test case. */
|
|
|
|
qd_synced_path = alloc_printf("%s/.synced/%s", out_dir, sd_ent->d_name);
|
|
|
|
id_fd = open(qd_synced_path, O_RDWR | O_CREAT, 0600);
|
|
|
|
if (id_fd < 0) PFATAL("Unable to create '%s'", qd_synced_path);
|
|
|
|
if (read(id_fd, &min_accept, sizeof(u32)) > 0)
|
|
lseek(id_fd, 0, SEEK_SET);
|
|
|
|
next_min_accept = min_accept;
|
|
|
|
/* Show stats */
|
|
|
|
sprintf(stage_tmp, "sync %u", ++sync_cnt);
|
|
stage_name = stage_tmp;
|
|
stage_cur = 0;
|
|
stage_max = 0;
|
|
|
|
/* For every file queued by this fuzzer, parse ID and see if we have looked at
|
|
it before; exec a test case if not. */
|
|
|
|
while ((qd_ent = readdir(qd))) {
|
|
|
|
u8* path;
|
|
s32 fd;
|
|
struct stat st;
|
|
|
|
if (qd_ent->d_name[0] == '.' ||
|
|
sscanf(qd_ent->d_name, CASE_PREFIX "%06u", &syncing_case) != 1 ||
|
|
syncing_case < min_accept) continue;
|
|
|
|
/* OK, sounds like a new one. Let's give it a try. */
|
|
|
|
if (syncing_case >= next_min_accept)
|
|
next_min_accept = syncing_case + 1;
|
|
|
|
path = alloc_printf("%s/%s", qd_path, qd_ent->d_name);
|
|
|
|
/* Allow this to fail in case the other fuzzer is resuming or so... */
|
|
|
|
fd = open(path, O_RDONLY);
|
|
|
|
if (fd < 0) {
|
|
ck_free(path);
|
|
continue;
|
|
}
|
|
|
|
if (fstat(fd, &st)) PFATAL("fstat() failed");
|
|
|
|
/* Ignore zero-sized or oversized files. */
|
|
|
|
if (st.st_size && st.st_size <= MAX_FILE) {
|
|
|
|
u8 fault;
|
|
u8* mem = mmap(0, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
|
|
|
|
if (mem == MAP_FAILED) PFATAL("Unable to mmap '%s'", path);
|
|
|
|
/* See what happens. We rely on save_if_interesting() to catch major
|
|
errors and save the test case. */
|
|
|
|
write_to_testcase(mem, st.st_size);
|
|
|
|
fault = run_target(argv, exec_tmout);
|
|
|
|
if (stop_soon) return;
|
|
|
|
syncing_party = sd_ent->d_name;
|
|
queued_imported += save_if_interesting(argv, mem, st.st_size, fault);
|
|
syncing_party = 0;
|
|
|
|
munmap(mem, st.st_size);
|
|
|
|
if (!(stage_cur++ % stats_update_freq)) show_stats();
|
|
|
|
}
|
|
|
|
ck_free(path);
|
|
close(fd);
|
|
|
|
}
|
|
|
|
ck_write(id_fd, &next_min_accept, sizeof(u32), qd_synced_path);
|
|
|
|
close(id_fd);
|
|
closedir(qd);
|
|
ck_free(qd_path);
|
|
ck_free(qd_synced_path);
|
|
|
|
}
|
|
|
|
closedir(sd);
|
|
|
|
}
|
|
|
|
|
|
/* Handle stop signal (Ctrl-C, etc). */
|
|
|
|
static void handle_stop_sig(int sig) {
|
|
|
|
stop_soon = 1;
|
|
|
|
if (child_pid > 0) kill(child_pid, SIGKILL);
|
|
if (forksrv_pid > 0) kill(forksrv_pid, SIGKILL);
|
|
|
|
}
|
|
|
|
|
|
/* Handle skip request (SIGUSR1). */
|
|
|
|
static void handle_skipreq(int sig) {
|
|
|
|
skip_requested = 1;
|
|
|
|
}
|
|
|
|
/* Handle timeout (SIGALRM). */
|
|
|
|
static void handle_timeout(int sig) {
|
|
|
|
if (child_pid > 0) {
|
|
|
|
child_timed_out = 1;
|
|
kill(child_pid, SIGKILL);
|
|
|
|
} else if (child_pid == -1 && forksrv_pid > 0) {
|
|
|
|
child_timed_out = 1;
|
|
kill(forksrv_pid, SIGKILL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Do a PATH search and find target binary to see that it exists and
|
|
isn't a shell script - a common and painful mistake. We also check for
|
|
a valid ELF header and for evidence of AFL instrumentation. */
|
|
|
|
EXP_ST void check_binary(u8* fname) {
|
|
|
|
u8* env_path = 0;
|
|
struct stat st;
|
|
|
|
s32 fd;
|
|
u8* f_data;
|
|
u32 f_len = 0;
|
|
|
|
ACTF("Validating target binary...");
|
|
|
|
if (strchr(fname, '/') || !(env_path = getenv("PATH"))) {
|
|
|
|
target_path = ck_strdup(fname);
|
|
if (stat(target_path, &st) || !S_ISREG(st.st_mode) ||
|
|
!(st.st_mode & 0111) || (f_len = st.st_size) < 4)
|
|
FATAL("Program '%s' not found or not executable", fname);
|
|
|
|
} else {
|
|
|
|
while (env_path) {
|
|
|
|
u8 *cur_elem, *delim = strchr(env_path, ':');
|
|
|
|
if (delim) {
|
|
|
|
cur_elem = ck_alloc(delim - env_path + 1);
|
|
memcpy(cur_elem, env_path, delim - env_path);
|
|
delim++;
|
|
|
|
} else cur_elem = ck_strdup(env_path);
|
|
|
|
env_path = delim;
|
|
|
|
if (cur_elem[0])
|
|
target_path = alloc_printf("%s/%s", cur_elem, fname);
|
|
else
|
|
target_path = ck_strdup(fname);
|
|
|
|
ck_free(cur_elem);
|
|
|
|
if (!stat(target_path, &st) && S_ISREG(st.st_mode) &&
|
|
(st.st_mode & 0111) && (f_len = st.st_size) >= 4) break;
|
|
|
|
ck_free(target_path);
|
|
target_path = 0;
|
|
|
|
}
|
|
|
|
if (!target_path) FATAL("Program '%s' not found or not executable", fname);
|
|
|
|
}
|
|
|
|
if (getenv("AFL_SKIP_BIN_CHECK")) return;
|
|
|
|
/* Check for blatant user errors. */
|
|
|
|
if ((!strncmp(target_path, "/tmp/", 5) && !strchr(target_path + 5, '/')) ||
|
|
(!strncmp(target_path, "/var/tmp/", 9) && !strchr(target_path + 9, '/')))
|
|
FATAL("Please don't keep binaries in /tmp or /var/tmp");
|
|
|
|
fd = open(target_path, O_RDONLY);
|
|
|
|
if (fd < 0) PFATAL("Unable to open '%s'", target_path);
|
|
|
|
f_data = mmap(0, f_len, PROT_READ, MAP_PRIVATE, fd, 0);
|
|
|
|
if (f_data == MAP_FAILED) PFATAL("Unable to mmap file '%s'", target_path);
|
|
|
|
close(fd);
|
|
|
|
if (f_data[0] == '#' && f_data[1] == '!') {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Oops, the target binary looks like a shell script. Some build systems will\n"
|
|
" sometimes generate shell stubs for dynamically linked programs; try static\n"
|
|
" library mode (./configure --disable-shared) if that's the case.\n\n"
|
|
|
|
" Another possible cause is that you are actually trying to use a shell\n"
|
|
" wrapper around the fuzzed component. Invoking shell can slow down the\n"
|
|
" fuzzing process by a factor of 20x or more; it's best to write the wrapper\n"
|
|
" in a compiled language instead.\n");
|
|
|
|
FATAL("Program '%s' is a shell script", target_path);
|
|
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
|
|
if (f_data[0] != 0x7f || memcmp(f_data + 1, "ELF", 3))
|
|
FATAL("Program '%s' is not an ELF binary", target_path);
|
|
|
|
#else
|
|
|
|
if (f_data[0] != 0xCF || f_data[1] != 0xFA || f_data[2] != 0xED)
|
|
FATAL("Program '%s' is not a 64-bit Mach-O binary", target_path);
|
|
|
|
#endif /* ^!__APPLE__ */
|
|
|
|
if (!qemu_mode && !dumb_mode &&
|
|
!memmem(f_data, f_len, SHM_ENV_VAR, strlen(SHM_ENV_VAR) + 1)) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Looks like the target binary is not instrumented! The fuzzer depends on\n"
|
|
" compile-time instrumentation to isolate interesting test cases while\n"
|
|
" mutating the input data. For more information, and for tips on how to\n"
|
|
" instrument binaries, please see %s/README.\n\n"
|
|
|
|
" When source code is not available, you may be able to leverage QEMU\n"
|
|
" mode support. Consult the README for tips on how to enable this.\n"
|
|
|
|
" (It is also possible to use afl-fuzz as a traditional, \"dumb\" fuzzer.\n"
|
|
" For that, you can use the -n option - but expect much worse results.)\n",
|
|
doc_path);
|
|
|
|
FATAL("No instrumentation detected");
|
|
|
|
}
|
|
|
|
if (qemu_mode &&
|
|
memmem(f_data, f_len, SHM_ENV_VAR, strlen(SHM_ENV_VAR) + 1)) {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"This program appears to be instrumented with afl-gcc, but is being run in\n"
|
|
" QEMU mode (-Q). This is probably not what you want - this setup will be\n"
|
|
" slow and offer no practical benefits.\n");
|
|
|
|
FATAL("Instrumentation found in -Q mode");
|
|
|
|
}
|
|
|
|
if (memmem(f_data, f_len, "libasan.so", 10) ||
|
|
memmem(f_data, f_len, "__msan_init", 11)) uses_asan = 1;
|
|
|
|
/* Detect persistent & deferred init signatures in the binary. */
|
|
|
|
if (memmem(f_data, f_len, PERSIST_SIG, strlen(PERSIST_SIG) + 1)) {
|
|
|
|
OKF(cPIN "Persistent mode binary detected.");
|
|
setenv(PERSIST_ENV_VAR, "1", 1);
|
|
persistent_mode = 1;
|
|
|
|
} else if (getenv("AFL_PERSISTENT")) {
|
|
|
|
WARNF("AFL_PERSISTENT is no longer supported and may misbehave!");
|
|
|
|
}
|
|
|
|
if (memmem(f_data, f_len, DEFER_SIG, strlen(DEFER_SIG) + 1)) {
|
|
|
|
OKF(cPIN "Deferred forkserver binary detected.");
|
|
setenv(DEFER_ENV_VAR, "1", 1);
|
|
deferred_mode = 1;
|
|
|
|
} else if (getenv("AFL_DEFER_FORKSRV")) {
|
|
|
|
WARNF("AFL_DEFER_FORKSRV is no longer supported and may misbehave!");
|
|
|
|
}
|
|
|
|
if (munmap(f_data, f_len)) PFATAL("unmap() failed");
|
|
|
|
}
|
|
|
|
|
|
/* Trim and possibly create a banner for the run. */
|
|
|
|
static void fix_up_banner(u8* name) {
|
|
|
|
if (!use_banner) {
|
|
|
|
if (sync_id) {
|
|
|
|
use_banner = sync_id;
|
|
|
|
} else {
|
|
|
|
u8* trim = strrchr(name, '/');
|
|
if (!trim) use_banner = name; else use_banner = trim + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (strlen(use_banner) > 40) {
|
|
|
|
u8* tmp = ck_alloc(44);
|
|
sprintf(tmp, "%.40s...", use_banner);
|
|
use_banner = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Check if we're on TTY. */
|
|
|
|
static void check_if_tty(void) {
|
|
|
|
struct winsize ws;
|
|
|
|
if (getenv("AFL_NO_UI")) {
|
|
OKF("Disabling the UI because AFL_NO_UI is set.");
|
|
not_on_tty = 1;
|
|
return;
|
|
}
|
|
|
|
if (ioctl(1, TIOCGWINSZ, &ws)) {
|
|
|
|
if (errno == ENOTTY) {
|
|
OKF("Looks like we're not running on a tty, so I'll be a bit less verbose.");
|
|
not_on_tty = 1;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Check terminal dimensions after resize. */
|
|
|
|
static void check_term_size(void) {
|
|
|
|
struct winsize ws;
|
|
|
|
term_too_small = 0;
|
|
|
|
if (ioctl(1, TIOCGWINSZ, &ws)) return;
|
|
|
|
if (ws.ws_row == 0 && ws.ws_col == 0) return;
|
|
if (ws.ws_row < 25 || ws.ws_col < 80) term_too_small = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Display usage hints. */
|
|
|
|
static void usage(u8* argv0) {
|
|
|
|
SAYF("\n%s [ options ] -- /path/to/fuzzed_app [ ... ]\n\n"
|
|
|
|
"Required parameters:\n\n"
|
|
|
|
" -i dir - input directory with test cases\n"
|
|
" -o dir - output directory for fuzzer findings\n\n"
|
|
|
|
"Execution control settings:\n\n"
|
|
|
|
" -f file - location read by the fuzzed program (stdin)\n"
|
|
" -t msec - timeout for each run (auto-scaled, 50-%u ms)\n"
|
|
" -m megs - memory limit for child process (%u MB)\n"
|
|
" -Q - use binary-only instrumentation (QEMU mode)\n\n"
|
|
|
|
"Fuzzing behavior settings:\n\n"
|
|
|
|
" -d - quick & dirty mode (skips deterministic steps)\n"
|
|
" -n - fuzz without instrumentation (dumb mode)\n"
|
|
" -x dir - optional fuzzer dictionary (see README)\n\n"
|
|
|
|
"Other stuff:\n\n"
|
|
|
|
" -T text - text banner to show on the screen\n"
|
|
" -M / -S id - distributed mode (see parallel_fuzzing.txt)\n"
|
|
" -C - crash exploration mode (the peruvian rabbit thing)\n"
|
|
" -V - show version number and exit\n\n"
|
|
" -b cpu_id - bind the fuzzing process to the specified CPU core\n\n"
|
|
|
|
"For additional tips, please consult %s/README.\n\n",
|
|
|
|
argv0, EXEC_TIMEOUT, MEM_LIMIT, doc_path);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
/* Prepare output directories and fds. */
|
|
|
|
EXP_ST void setup_dirs_fds(void) {
|
|
|
|
u8* tmp;
|
|
s32 fd;
|
|
|
|
ACTF("Setting up output directories...");
|
|
|
|
if (sync_id && mkdir(sync_dir, 0700) && errno != EEXIST)
|
|
PFATAL("Unable to create '%s'", sync_dir);
|
|
|
|
if (mkdir(out_dir, 0700)) {
|
|
|
|
if (errno != EEXIST) PFATAL("Unable to create '%s'", out_dir);
|
|
|
|
maybe_delete_out_dir();
|
|
|
|
} else {
|
|
|
|
if (in_place_resume)
|
|
FATAL("Resume attempted but old output directory not found");
|
|
|
|
out_dir_fd = open(out_dir, O_RDONLY);
|
|
|
|
#ifndef __sun
|
|
|
|
if (out_dir_fd < 0 || flock(out_dir_fd, LOCK_EX | LOCK_NB))
|
|
PFATAL("Unable to flock() output directory.");
|
|
|
|
#endif /* !__sun */
|
|
|
|
}
|
|
|
|
/* Queue directory for any starting & discovered paths. */
|
|
|
|
tmp = alloc_printf("%s/queue", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* Top-level directory for queue metadata used for session
|
|
resume and related tasks. */
|
|
|
|
tmp = alloc_printf("%s/queue/.state/", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* Directory for flagging queue entries that went through
|
|
deterministic fuzzing in the past. */
|
|
|
|
tmp = alloc_printf("%s/queue/.state/deterministic_done/", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* Directory with the auto-selected dictionary entries. */
|
|
|
|
tmp = alloc_printf("%s/queue/.state/auto_extras/", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* The set of paths currently deemed redundant. */
|
|
|
|
tmp = alloc_printf("%s/queue/.state/redundant_edges/", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* The set of paths showing variable behavior. */
|
|
|
|
tmp = alloc_printf("%s/queue/.state/variable_behavior/", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* Sync directory for keeping track of cooperating fuzzers. */
|
|
|
|
if (sync_id) {
|
|
|
|
tmp = alloc_printf("%s/.synced/", out_dir);
|
|
|
|
if (mkdir(tmp, 0700) && (!in_place_resume || errno != EEXIST))
|
|
PFATAL("Unable to create '%s'", tmp);
|
|
|
|
ck_free(tmp);
|
|
|
|
}
|
|
|
|
/* All recorded crashes. */
|
|
|
|
tmp = alloc_printf("%s/crashes", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* All recorded hangs. */
|
|
|
|
tmp = alloc_printf("%s/hangs", out_dir);
|
|
if (mkdir(tmp, 0700)) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
/* Generally useful file descriptors. */
|
|
|
|
dev_null_fd = open("/dev/null", O_RDWR);
|
|
if (dev_null_fd < 0) PFATAL("Unable to open /dev/null");
|
|
|
|
dev_urandom_fd = open("/dev/urandom", O_RDONLY);
|
|
if (dev_urandom_fd < 0) PFATAL("Unable to open /dev/urandom");
|
|
|
|
/* Gnuplot output file. */
|
|
|
|
tmp = alloc_printf("%s/plot_data", out_dir);
|
|
fd = open(tmp, O_WRONLY | O_CREAT | O_EXCL, 0600);
|
|
if (fd < 0) PFATAL("Unable to create '%s'", tmp);
|
|
ck_free(tmp);
|
|
|
|
plot_file = fdopen(fd, "w");
|
|
if (!plot_file) PFATAL("fdopen() failed");
|
|
|
|
fprintf(plot_file, "# unix_time, cycles_done, cur_path, paths_total, "
|
|
"pending_total, pending_favs, map_size, unique_crashes, "
|
|
"unique_hangs, max_depth, execs_per_sec\n");
|
|
/* ignore errors */
|
|
|
|
}
|
|
|
|
|
|
/* Setup the output file for fuzzed data, if not using -f. */
|
|
|
|
EXP_ST void setup_stdio_file(void) {
|
|
|
|
u8* fn = alloc_printf("%s/.cur_input", out_dir);
|
|
|
|
unlink(fn); /* Ignore errors */
|
|
|
|
out_fd = open(fn, O_RDWR | O_CREAT | O_EXCL, 0600);
|
|
|
|
if (out_fd < 0) PFATAL("Unable to create '%s'", fn);
|
|
|
|
ck_free(fn);
|
|
|
|
}
|
|
|
|
|
|
/* Make sure that core dumps don't go to a program. */
|
|
|
|
static void check_crash_handling(void) {
|
|
|
|
#ifdef __APPLE__
|
|
|
|
/* Yuck! There appears to be no simple C API to query for the state of
|
|
loaded daemons on MacOS X, and I'm a bit hesitant to do something
|
|
more sophisticated, such as disabling crash reporting via Mach ports,
|
|
until I get a box to test the code. So, for now, we check for crash
|
|
reporting the awful way. */
|
|
|
|
if (system("launchctl list 2>/dev/null | grep -q '\\.ReportCrash$'")) return;
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, your system is configured to forward crash notifications to an\n"
|
|
" external crash reporting utility. This will cause issues due to the\n"
|
|
" extended delay between the fuzzed binary malfunctioning and this fact\n"
|
|
" being relayed to the fuzzer via the standard waitpid() API.\n\n"
|
|
" To avoid having crashes misinterpreted as timeouts, please run the\n"
|
|
" following commands:\n\n"
|
|
|
|
" SL=/System/Library; PL=com.apple.ReportCrash\n"
|
|
" launchctl unload -w ${SL}/LaunchAgents/${PL}.plist\n"
|
|
" sudo launchctl unload -w ${SL}/LaunchDaemons/${PL}.Root.plist\n");
|
|
|
|
if (!getenv("AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES"))
|
|
FATAL("Crash reporter detected");
|
|
|
|
#else
|
|
|
|
/* This is Linux specific, but I don't think there's anything equivalent on
|
|
*BSD, so we can just let it slide for now. */
|
|
|
|
s32 fd = open("/proc/sys/kernel/core_pattern", O_RDONLY);
|
|
u8 fchar;
|
|
|
|
if (fd < 0) return;
|
|
|
|
ACTF("Checking core_pattern...");
|
|
|
|
if (read(fd, &fchar, 1) == 1 && fchar == '|') {
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Hmm, your system is configured to send core dump notifications to an\n"
|
|
" external utility. This will cause issues: there will be an extended delay\n"
|
|
" between stumbling upon a crash and having this information relayed to the\n"
|
|
" fuzzer via the standard waitpid() API.\n\n"
|
|
|
|
" To avoid having crashes misinterpreted as timeouts, please log in as root\n"
|
|
" and temporarily modify /proc/sys/kernel/core_pattern, like so:\n\n"
|
|
|
|
" echo core >/proc/sys/kernel/core_pattern\n");
|
|
|
|
if (!getenv("AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES"))
|
|
FATAL("Pipe at the beginning of 'core_pattern'");
|
|
|
|
}
|
|
|
|
close(fd);
|
|
|
|
#endif /* ^__APPLE__ */
|
|
|
|
}
|
|
|
|
|
|
/* Check CPU governor. */
|
|
|
|
static void check_cpu_governor(void) {
|
|
|
|
FILE* f;
|
|
u8 tmp[128];
|
|
u64 min = 0, max = 0;
|
|
|
|
if (getenv("AFL_SKIP_CPUFREQ")) return;
|
|
|
|
f = fopen("/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor", "r");
|
|
if (!f) return;
|
|
|
|
ACTF("Checking CPU scaling governor...");
|
|
|
|
if (!fgets(tmp, 128, f)) PFATAL("fgets() failed");
|
|
|
|
fclose(f);
|
|
|
|
if (!strncmp(tmp, "perf", 4)) return;
|
|
|
|
f = fopen("/sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq", "r");
|
|
|
|
if (f) {
|
|
if (fscanf(f, "%llu", &min) != 1) min = 0;
|
|
fclose(f);
|
|
}
|
|
|
|
f = fopen("/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq", "r");
|
|
|
|
if (f) {
|
|
if (fscanf(f, "%llu", &max) != 1) max = 0;
|
|
fclose(f);
|
|
}
|
|
|
|
if (min == max) return;
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Whoops, your system uses on-demand CPU frequency scaling, adjusted\n"
|
|
" between %llu and %llu MHz. Unfortunately, the scaling algorithm in the\n"
|
|
" kernel is imperfect and can miss the short-lived processes spawned by\n"
|
|
" afl-fuzz. To keep things moving, run these commands as root:\n\n"
|
|
|
|
" cd /sys/devices/system/cpu\n"
|
|
" echo performance | tee cpu*/cpufreq/scaling_governor\n\n"
|
|
|
|
" You can later go back to the original state by replacing 'performance' with\n"
|
|
" 'ondemand'. If you don't want to change the settings, set AFL_SKIP_CPUFREQ\n"
|
|
" to make afl-fuzz skip this check - but expect some performance drop.\n",
|
|
min / 1024, max / 1024);
|
|
|
|
FATAL("Suboptimal CPU scaling governor");
|
|
|
|
}
|
|
|
|
|
|
/* Count the number of logical CPU cores. */
|
|
|
|
static void get_core_count(void) {
|
|
|
|
u32 cur_runnable = 0;
|
|
|
|
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
|
|
|
|
size_t s = sizeof(cpu_core_count);
|
|
|
|
/* On *BSD systems, we can just use a sysctl to get the number of CPUs. */
|
|
|
|
#ifdef __APPLE__
|
|
|
|
if (sysctlbyname("hw.logicalcpu", &cpu_core_count, &s, NULL, 0) < 0)
|
|
return;
|
|
|
|
#else
|
|
|
|
int s_name[2] = { CTL_HW, HW_NCPU };
|
|
|
|
if (sysctl(s_name, 2, &cpu_core_count, &s, NULL, 0) < 0) return;
|
|
|
|
#endif /* ^__APPLE__ */
|
|
|
|
#else
|
|
|
|
#ifdef HAVE_AFFINITY
|
|
|
|
cpu_core_count = sysconf(_SC_NPROCESSORS_ONLN);
|
|
|
|
#else
|
|
|
|
FILE* f = fopen("/proc/stat", "r");
|
|
u8 tmp[1024];
|
|
|
|
if (!f) return;
|
|
|
|
while (fgets(tmp, sizeof(tmp), f))
|
|
if (!strncmp(tmp, "cpu", 3) && isdigit(tmp[3])) cpu_core_count++;
|
|
|
|
fclose(f);
|
|
|
|
#endif /* ^HAVE_AFFINITY */
|
|
|
|
#endif /* ^(__APPLE__ || __FreeBSD__ || __OpenBSD__) */
|
|
|
|
if (cpu_core_count > 0) {
|
|
|
|
cur_runnable = (u32)get_runnable_processes();
|
|
|
|
#if defined(__APPLE__) || defined(__FreeBSD__) || defined (__OpenBSD__)
|
|
|
|
/* Add ourselves, since the 1-minute average doesn't include that yet. */
|
|
|
|
cur_runnable++;
|
|
|
|
#endif /* __APPLE__ || __FreeBSD__ || __OpenBSD__ */
|
|
|
|
OKF("You have %u CPU core%s and %u runnable tasks (utilization: %0.0f%%).",
|
|
cpu_core_count, cpu_core_count > 1 ? "s" : "",
|
|
cur_runnable, cur_runnable * 100.0 / cpu_core_count);
|
|
|
|
if (cpu_core_count > 1) {
|
|
|
|
if (cur_runnable > cpu_core_count * 1.5) {
|
|
|
|
WARNF("System under apparent load, performance may be spotty.");
|
|
|
|
} else if (cur_runnable + 1 <= cpu_core_count) {
|
|
|
|
OKF("Try parallel jobs - see %s/parallel_fuzzing.txt.", doc_path);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cpu_core_count = 0;
|
|
WARNF("Unable to figure out the number of CPU cores.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Validate and fix up out_dir and sync_dir when using -S. */
|
|
|
|
static void fix_up_sync(void) {
|
|
|
|
u8* x = sync_id;
|
|
|
|
if (dumb_mode)
|
|
FATAL("-S / -M and -n are mutually exclusive");
|
|
|
|
if (skip_deterministic) {
|
|
|
|
if (force_deterministic)
|
|
FATAL("use -S instead of -M -d");
|
|
else
|
|
FATAL("-S already implies -d");
|
|
|
|
}
|
|
|
|
while (*x) {
|
|
|
|
if (!isalnum(*x) && *x != '_' && *x != '-')
|
|
FATAL("Non-alphanumeric fuzzer ID specified via -S or -M");
|
|
|
|
x++;
|
|
|
|
}
|
|
|
|
if (strlen(sync_id) > 32) FATAL("Fuzzer ID too long");
|
|
|
|
x = alloc_printf("%s/%s", out_dir, sync_id);
|
|
|
|
sync_dir = out_dir;
|
|
out_dir = x;
|
|
|
|
if (!force_deterministic) {
|
|
skip_deterministic = 1;
|
|
use_splicing = 1;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Handle screen resize (SIGWINCH). */
|
|
|
|
static void handle_resize(int sig) {
|
|
clear_screen = 1;
|
|
}
|
|
|
|
|
|
/* Check ASAN options. */
|
|
|
|
static void check_asan_opts(void) {
|
|
u8* x = getenv("ASAN_OPTIONS");
|
|
|
|
if (x) {
|
|
|
|
if (!strstr(x, "abort_on_error=1"))
|
|
FATAL("Custom ASAN_OPTIONS set without abort_on_error=1 - please fix!");
|
|
|
|
if (!strstr(x, "symbolize=0"))
|
|
FATAL("Custom ASAN_OPTIONS set without symbolize=0 - please fix!");
|
|
|
|
}
|
|
|
|
x = getenv("MSAN_OPTIONS");
|
|
|
|
if (x) {
|
|
|
|
if (!strstr(x, "exit_code=" STRINGIFY(MSAN_ERROR)))
|
|
FATAL("Custom MSAN_OPTIONS set without exit_code="
|
|
STRINGIFY(MSAN_ERROR) " - please fix!");
|
|
|
|
if (!strstr(x, "symbolize=0"))
|
|
FATAL("Custom MSAN_OPTIONS set without symbolize=0 - please fix!");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* Detect @@ in args. */
|
|
|
|
EXP_ST void detect_file_args(char** argv) {
|
|
|
|
u32 i = 0;
|
|
u8* cwd = getcwd(NULL, 0);
|
|
|
|
if (!cwd) PFATAL("getcwd() failed");
|
|
|
|
while (argv[i]) {
|
|
|
|
u8* aa_loc = strstr(argv[i], "@@");
|
|
|
|
if (aa_loc) {
|
|
|
|
u8 *aa_subst, *n_arg;
|
|
|
|
/* If we don't have a file name chosen yet, use a safe default. */
|
|
|
|
if (!out_file)
|
|
out_file = alloc_printf("%s/.cur_input", out_dir);
|
|
|
|
/* Be sure that we're always using fully-qualified paths. */
|
|
|
|
if (out_file[0] == '/') aa_subst = out_file;
|
|
else aa_subst = alloc_printf("%s/%s", cwd, out_file);
|
|
|
|
/* Construct a replacement argv value. */
|
|
|
|
*aa_loc = 0;
|
|
n_arg = alloc_printf("%s%s%s", argv[i], aa_subst, aa_loc + 2);
|
|
argv[i] = n_arg;
|
|
*aa_loc = '@';
|
|
|
|
if (out_file[0] != '/') ck_free(aa_subst);
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
free(cwd); /* not tracked */
|
|
|
|
}
|
|
|
|
|
|
/* Set up signal handlers. More complicated that needs to be, because libc on
|
|
Solaris doesn't resume interrupted reads(), sets SA_RESETHAND when you call
|
|
siginterrupt(), and does other unnecessary things. */
|
|
|
|
EXP_ST void setup_signal_handlers(void) {
|
|
|
|
struct sigaction sa;
|
|
|
|
sa.sa_handler = NULL;
|
|
sa.sa_flags = SA_RESTART;
|
|
sa.sa_sigaction = NULL;
|
|
|
|
sigemptyset(&sa.sa_mask);
|
|
|
|
/* Various ways of saying "stop". */
|
|
|
|
sa.sa_handler = handle_stop_sig;
|
|
sigaction(SIGHUP, &sa, NULL);
|
|
sigaction(SIGINT, &sa, NULL);
|
|
sigaction(SIGTERM, &sa, NULL);
|
|
|
|
/* Exec timeout notifications. */
|
|
|
|
sa.sa_handler = handle_timeout;
|
|
sigaction(SIGALRM, &sa, NULL);
|
|
|
|
/* Window resize */
|
|
|
|
sa.sa_handler = handle_resize;
|
|
sigaction(SIGWINCH, &sa, NULL);
|
|
|
|
/* SIGUSR1: skip entry */
|
|
|
|
sa.sa_handler = handle_skipreq;
|
|
sigaction(SIGUSR1, &sa, NULL);
|
|
|
|
/* Things we don't care about. */
|
|
|
|
sa.sa_handler = SIG_IGN;
|
|
sigaction(SIGTSTP, &sa, NULL);
|
|
sigaction(SIGPIPE, &sa, NULL);
|
|
|
|
}
|
|
|
|
|
|
/* Rewrite argv for QEMU. */
|
|
|
|
static char** get_qemu_argv(u8* own_loc, char** argv, int argc) {
|
|
|
|
char** new_argv = ck_alloc(sizeof(char*) * (argc + 4));
|
|
u8 *tmp, *cp, *rsl, *own_copy;
|
|
|
|
/* Workaround for a QEMU stability glitch. */
|
|
|
|
setenv("QEMU_LOG", "nochain", 1);
|
|
|
|
memcpy(new_argv + 3, argv + 1, sizeof(char*) * argc);
|
|
|
|
new_argv[2] = target_path;
|
|
new_argv[1] = "--";
|
|
|
|
/* Now we need to actually find the QEMU binary to put in argv[0]. */
|
|
|
|
tmp = getenv("AFL_PATH");
|
|
|
|
if (tmp) {
|
|
|
|
cp = alloc_printf("%s/afl-qemu-trace", tmp);
|
|
|
|
if (access(cp, X_OK))
|
|
FATAL("Unable to find '%s'", tmp);
|
|
|
|
target_path = new_argv[0] = cp;
|
|
return new_argv;
|
|
|
|
}
|
|
|
|
own_copy = ck_strdup(own_loc);
|
|
rsl = strrchr(own_copy, '/');
|
|
|
|
if (rsl) {
|
|
|
|
*rsl = 0;
|
|
|
|
cp = alloc_printf("%s/afl-qemu-trace", own_copy);
|
|
ck_free(own_copy);
|
|
|
|
if (!access(cp, X_OK)) {
|
|
|
|
target_path = new_argv[0] = cp;
|
|
return new_argv;
|
|
|
|
}
|
|
|
|
} else ck_free(own_copy);
|
|
|
|
if (!access(BIN_PATH "/afl-qemu-trace", X_OK)) {
|
|
|
|
target_path = new_argv[0] = ck_strdup(BIN_PATH "/afl-qemu-trace");
|
|
return new_argv;
|
|
|
|
}
|
|
|
|
SAYF("\n" cLRD "[-] " cRST
|
|
"Oops, unable to find the 'afl-qemu-trace' binary. The binary must be built\n"
|
|
" separately by following the instructions in qemu_mode/README.qemu. If you\n"
|
|
" already have the binary installed, you may need to specify AFL_PATH in the\n"
|
|
" environment.\n\n"
|
|
|
|
" Of course, even without QEMU, afl-fuzz can still work with binaries that are\n"
|
|
" instrumented at compile time with afl-gcc. It is also possible to use it as a\n"
|
|
" traditional \"dumb\" fuzzer by specifying '-n' in the command line.\n");
|
|
|
|
FATAL("Failed to locate 'afl-qemu-trace'.");
|
|
|
|
}
|
|
|
|
|
|
/* Make a copy of the current command line. */
|
|
|
|
static void save_cmdline(u32 argc, char** argv) {
|
|
|
|
u32 len = 1, i;
|
|
u8* buf;
|
|
|
|
for (i = 0; i < argc; i++)
|
|
len += strlen(argv[i]) + 1;
|
|
|
|
buf = orig_cmdline = ck_alloc(len);
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
|
|
u32 l = strlen(argv[i]);
|
|
|
|
memcpy(buf, argv[i], l);
|
|
buf += l;
|
|
|
|
if (i != argc - 1) *(buf++) = ' ';
|
|
|
|
}
|
|
|
|
*buf = 0;
|
|
|
|
}
|
|
|
|
|
|
#ifndef AFL_LIB
|
|
|
|
/* Main entry point */
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
s32 opt;
|
|
u64 prev_queued = 0;
|
|
u32 sync_interval_cnt = 0, seek_to;
|
|
u8 *extras_dir = 0;
|
|
u8 mem_limit_given = 0;
|
|
u8 exit_1 = !!getenv("AFL_BENCH_JUST_ONE");
|
|
char** use_argv;
|
|
|
|
struct timeval tv;
|
|
struct timezone tz;
|
|
|
|
SAYF(cCYA "afl-fuzz " cBRI VERSION cRST " by <lcamtuf@google.com>\n");
|
|
|
|
doc_path = access(DOC_PATH, F_OK) ? "docs" : DOC_PATH;
|
|
|
|
gettimeofday(&tv, &tz);
|
|
srandom(tv.tv_sec ^ tv.tv_usec ^ getpid());
|
|
|
|
while ((opt = getopt(argc, argv, "+i:o:f:m:b:t:T:dnCB:S:M:x:QV")) > 0)
|
|
|
|
switch (opt) {
|
|
|
|
case 'i': /* input dir */
|
|
|
|
if (in_dir) FATAL("Multiple -i options not supported");
|
|
in_dir = optarg;
|
|
|
|
if (!strcmp(in_dir, "-")) in_place_resume = 1;
|
|
|
|
break;
|
|
|
|
case 'o': /* output dir */
|
|
|
|
if (out_dir) FATAL("Multiple -o options not supported");
|
|
out_dir = optarg;
|
|
break;
|
|
|
|
case 'M': { /* master sync ID */
|
|
|
|
u8* c;
|
|
|
|
if (sync_id) FATAL("Multiple -S or -M options not supported");
|
|
sync_id = ck_strdup(optarg);
|
|
|
|
if ((c = strchr(sync_id, ':'))) {
|
|
|
|
*c = 0;
|
|
|
|
if (sscanf(c + 1, "%u/%u", &master_id, &master_max) != 2 ||
|
|
!master_id || !master_max || master_id > master_max ||
|
|
master_max > 1000000) FATAL("Bogus master ID passed to -M");
|
|
|
|
}
|
|
|
|
force_deterministic = 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'S':
|
|
|
|
if (sync_id) FATAL("Multiple -S or -M options not supported");
|
|
sync_id = ck_strdup(optarg);
|
|
break;
|
|
|
|
case 'f': /* target file */
|
|
|
|
if (out_file) FATAL("Multiple -f options not supported");
|
|
out_file = optarg;
|
|
break;
|
|
|
|
case 'x': /* dictionary */
|
|
|
|
if (extras_dir) FATAL("Multiple -x options not supported");
|
|
extras_dir = optarg;
|
|
break;
|
|
|
|
case 't': { /* timeout */
|
|
|
|
u8 suffix = 0;
|
|
|
|
if (timeout_given) FATAL("Multiple -t options not supported");
|
|
|
|
if (sscanf(optarg, "%u%c", &exec_tmout, &suffix) < 1 ||
|
|
optarg[0] == '-') FATAL("Bad syntax used for -t");
|
|
|
|
if (exec_tmout < 5) FATAL("Dangerously low value of -t");
|
|
|
|
if (suffix == '+') timeout_given = 2; else timeout_given = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'm': { /* mem limit */
|
|
|
|
u8 suffix = 'M';
|
|
|
|
if (mem_limit_given) FATAL("Multiple -m options not supported");
|
|
mem_limit_given = 1;
|
|
|
|
if (!strcmp(optarg, "none")) {
|
|
|
|
mem_limit = 0;
|
|
break;
|
|
|
|
}
|
|
|
|
if (sscanf(optarg, "%llu%c", &mem_limit, &suffix) < 1 ||
|
|
optarg[0] == '-') FATAL("Bad syntax used for -m");
|
|
|
|
switch (suffix) {
|
|
|
|
case 'T': mem_limit *= 1024 * 1024; break;
|
|
case 'G': mem_limit *= 1024; break;
|
|
case 'k': mem_limit /= 1024; break;
|
|
case 'M': break;
|
|
|
|
default: FATAL("Unsupported suffix or bad syntax for -m");
|
|
|
|
}
|
|
|
|
if (mem_limit < 5) FATAL("Dangerously low value of -m");
|
|
|
|
if (sizeof(rlim_t) == 4 && mem_limit > 2000)
|
|
FATAL("Value of -m out of range on 32-bit systems");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'b': { /* bind CPU core */
|
|
|
|
if (cpu_to_bind_given) FATAL("Multiple -b options not supported");
|
|
cpu_to_bind_given = 1;
|
|
|
|
if (sscanf(optarg, "%u", &cpu_to_bind) < 1 ||
|
|
optarg[0] == '-') FATAL("Bad syntax used for -b");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 'd': /* skip deterministic */
|
|
|
|
if (skip_deterministic) FATAL("Multiple -d options not supported");
|
|
skip_deterministic = 1;
|
|
use_splicing = 1;
|
|
break;
|
|
|
|
case 'B': /* load bitmap */
|
|
|
|
/* This is a secret undocumented option! It is useful if you find
|
|
an interesting test case during a normal fuzzing process, and want
|
|
to mutate it without rediscovering any of the test cases already
|
|
found during an earlier run.
|
|
|
|
To use this mode, you need to point -B to the fuzz_bitmap produced
|
|
by an earlier run for the exact same binary... and that's it.
|
|
|
|
I only used this once or twice to get variants of a particular
|
|
file, so I'm not making this an official setting. */
|
|
|
|
if (in_bitmap) FATAL("Multiple -B options not supported");
|
|
|
|
in_bitmap = optarg;
|
|
read_bitmap(in_bitmap);
|
|
break;
|
|
|
|
case 'C': /* crash mode */
|
|
|
|
if (crash_mode) FATAL("Multiple -C options not supported");
|
|
crash_mode = FAULT_CRASH;
|
|
break;
|
|
|
|
case 'n': /* dumb mode */
|
|
|
|
if (dumb_mode) FATAL("Multiple -n options not supported");
|
|
if (getenv("AFL_DUMB_FORKSRV")) dumb_mode = 2; else dumb_mode = 1;
|
|
|
|
break;
|
|
|
|
case 'T': /* banner */
|
|
|
|
if (use_banner) FATAL("Multiple -T options not supported");
|
|
use_banner = optarg;
|
|
break;
|
|
|
|
case 'Q': /* QEMU mode */
|
|
|
|
if (qemu_mode) FATAL("Multiple -Q options not supported");
|
|
qemu_mode = 1;
|
|
|
|
if (!mem_limit_given) mem_limit = MEM_LIMIT_QEMU;
|
|
|
|
break;
|
|
|
|
case 'V': /* Show version number */
|
|
|
|
/* Version number has been printed already, just quit. */
|
|
exit(0);
|
|
|
|
default:
|
|
|
|
usage(argv[0]);
|
|
|
|
}
|
|
|
|
if (optind == argc || !in_dir || !out_dir) usage(argv[0]);
|
|
|
|
setup_signal_handlers();
|
|
check_asan_opts();
|
|
|
|
if (sync_id) fix_up_sync();
|
|
|
|
if (!strcmp(in_dir, out_dir))
|
|
FATAL("Input and output directories can't be the same");
|
|
|
|
if (dumb_mode) {
|
|
|
|
if (crash_mode) FATAL("-C and -n are mutually exclusive");
|
|
if (qemu_mode) FATAL("-Q and -n are mutually exclusive");
|
|
|
|
}
|
|
|
|
if (getenv("AFL_NO_FORKSRV")) no_forkserver = 1;
|
|
if (getenv("AFL_NO_CPU_RED")) no_cpu_meter_red = 1;
|
|
if (getenv("AFL_NO_ARITH")) no_arith = 1;
|
|
if (getenv("AFL_SHUFFLE_QUEUE")) shuffle_queue = 1;
|
|
if (getenv("AFL_FAST_CAL")) fast_cal = 1;
|
|
|
|
if (getenv("AFL_HANG_TMOUT")) {
|
|
hang_tmout = atoi(getenv("AFL_HANG_TMOUT"));
|
|
if (!hang_tmout) FATAL("Invalid value of AFL_HANG_TMOUT");
|
|
}
|
|
|
|
if (dumb_mode == 2 && no_forkserver)
|
|
FATAL("AFL_DUMB_FORKSRV and AFL_NO_FORKSRV are mutually exclusive");
|
|
|
|
if (getenv("AFL_PRELOAD")) {
|
|
setenv("LD_PRELOAD", getenv("AFL_PRELOAD"), 1);
|
|
setenv("DYLD_INSERT_LIBRARIES", getenv("AFL_PRELOAD"), 1);
|
|
}
|
|
|
|
if (getenv("AFL_LD_PRELOAD"))
|
|
FATAL("Use AFL_PRELOAD instead of AFL_LD_PRELOAD");
|
|
|
|
save_cmdline(argc, argv);
|
|
|
|
fix_up_banner(argv[optind]);
|
|
|
|
check_if_tty();
|
|
|
|
get_core_count();
|
|
|
|
#ifdef HAVE_AFFINITY
|
|
bind_to_free_cpu();
|
|
#endif /* HAVE_AFFINITY */
|
|
|
|
check_crash_handling();
|
|
check_cpu_governor();
|
|
|
|
setup_post();
|
|
setup_shm();
|
|
init_count_class16();
|
|
|
|
setup_dirs_fds();
|
|
read_testcases();
|
|
load_auto();
|
|
|
|
pivot_inputs();
|
|
|
|
if (extras_dir) load_extras(extras_dir);
|
|
|
|
if (!timeout_given) find_timeout();
|
|
|
|
detect_file_args(argv + optind + 1);
|
|
|
|
if (!out_file) setup_stdio_file();
|
|
|
|
check_binary(argv[optind]);
|
|
|
|
start_time = get_cur_time();
|
|
|
|
if (qemu_mode)
|
|
use_argv = get_qemu_argv(argv[0], argv + optind, argc - optind);
|
|
else
|
|
use_argv = argv + optind;
|
|
|
|
perform_dry_run(use_argv);
|
|
|
|
cull_queue();
|
|
|
|
show_init_stats();
|
|
|
|
seek_to = find_start_position();
|
|
|
|
write_stats_file(0, 0, 0);
|
|
save_auto();
|
|
|
|
if (stop_soon) goto stop_fuzzing;
|
|
|
|
/* Woop woop woop */
|
|
|
|
if (!not_on_tty) {
|
|
sleep(4);
|
|
start_time += 4000;
|
|
if (stop_soon) goto stop_fuzzing;
|
|
}
|
|
|
|
while (1) {
|
|
|
|
u8 skipped_fuzz;
|
|
|
|
cull_queue();
|
|
|
|
if (!queue_cur) {
|
|
|
|
queue_cycle++;
|
|
current_entry = 0;
|
|
cur_skipped_paths = 0;
|
|
queue_cur = queue;
|
|
|
|
while (seek_to) {
|
|
current_entry++;
|
|
seek_to--;
|
|
queue_cur = queue_cur->next;
|
|
}
|
|
|
|
show_stats();
|
|
|
|
if (not_on_tty) {
|
|
ACTF("Entering queue cycle %llu.", queue_cycle);
|
|
fflush(stdout);
|
|
}
|
|
|
|
/* If we had a full queue cycle with no new finds, try
|
|
recombination strategies next. */
|
|
|
|
if (queued_paths == prev_queued) {
|
|
|
|
if (use_splicing) cycles_wo_finds++; else use_splicing = 1;
|
|
|
|
} else cycles_wo_finds = 0;
|
|
|
|
prev_queued = queued_paths;
|
|
|
|
if (sync_id && queue_cycle == 1 && getenv("AFL_IMPORT_FIRST"))
|
|
sync_fuzzers(use_argv);
|
|
|
|
}
|
|
|
|
skipped_fuzz = fuzz_one(use_argv);
|
|
|
|
if (!stop_soon && sync_id && !skipped_fuzz) {
|
|
|
|
if (!(sync_interval_cnt++ % SYNC_INTERVAL))
|
|
sync_fuzzers(use_argv);
|
|
|
|
}
|
|
|
|
if (!stop_soon && exit_1) stop_soon = 2;
|
|
|
|
if (stop_soon) break;
|
|
|
|
queue_cur = queue_cur->next;
|
|
current_entry++;
|
|
|
|
}
|
|
|
|
if (queue_cur) show_stats();
|
|
|
|
/* If we stopped programmatically, we kill the forkserver and the current runner.
|
|
If we stopped manually, this is done by the signal handler. */
|
|
if (stop_soon == 2) {
|
|
if (child_pid > 0) kill(child_pid, SIGKILL);
|
|
if (forksrv_pid > 0) kill(forksrv_pid, SIGKILL);
|
|
}
|
|
/* Now that we've killed the forkserver, we wait for it to be able to get rusage stats. */
|
|
if (waitpid(forksrv_pid, NULL, 0) <= 0) {
|
|
WARNF("error waitpid\n");
|
|
}
|
|
|
|
write_bitmap();
|
|
write_stats_file(0, 0, 0);
|
|
save_auto();
|
|
|
|
stop_fuzzing:
|
|
|
|
SAYF(CURSOR_SHOW cLRD "\n\n+++ Testing aborted %s +++\n" cRST,
|
|
stop_soon == 2 ? "programmatically" : "by user");
|
|
|
|
/* Running for more than 30 minutes but still doing first cycle? */
|
|
|
|
if (queue_cycle == 1 && get_cur_time() - start_time > 30 * 60 * 1000) {
|
|
|
|
SAYF("\n" cYEL "[!] " cRST
|
|
"Stopped during the first cycle, results may be incomplete.\n"
|
|
" (For info on resuming, see %s/README.)\n", doc_path);
|
|
|
|
}
|
|
|
|
fclose(plot_file);
|
|
destroy_queue();
|
|
destroy_extras();
|
|
ck_free(target_path);
|
|
ck_free(sync_id);
|
|
|
|
alloc_report();
|
|
|
|
OKF("We're done here. Have a nice day!\n");
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
#endif /* !AFL_LIB */
|