/* * Copyright 2002-2019 Intel Corporation. * * This software is provided to you as Sample Source Code as defined in the accompanying * End User License Agreement for the Intel(R) Software Development Products ("Agreement") * section 1.L. * * This software and the related documents are provided as is, with no express or implied * warranties, other than those that are expressly stated in the License. */ /* * * A memory trace (Ip of memory accessing instruction and address of memory access - see * struct MEMREF) is collected by inserting Pin buffering API code into the application code, * via calls to INS_InsertFillBuffer. This analysis code writes a MEMREF into the * buffer being filled, and calls the registered BufferFull function (see call to * PIN_DefineTraceBuffer which defines the buffer and registers the BufferFull function) * when the buffer becomes full. * The BufferFull function processes the buffer and returns it to Pin to be filled again. * * Each application thread has it's own buffer - so multiple application threads do NOT * block each other on buffer accesses * * This tool is similar to memtrace_simple, but uses the Pin Buffering API * */ #include #include #include #include "pin.H" /* * Knobs for tool */ KNOB KnobProcessBuffer(KNOB_MODE_WRITEONCE, "pintool", "process_buffs", "1", "process the filled buffers"); // 256*4096=1048576 - same size buffer in memtrace_simple, membuffer_simple, membuffer_multi KNOB KnobNumPagesInBuffer(KNOB_MODE_WRITEONCE, "pintool", "num_pages_in_buffer", "256", "number of pages in buffer"); /* Struct of memory reference written to the buffer */ struct MEMREF { ADDRINT pc; ADDRINT ea; }; // The buffer ID returned by the one call to PIN_DefineTraceBuffer BUFFER_ID bufId; // the Pin TLS slot that an application-thread will use to hold the APP_THREAD_REPRESENTITVE // object that it owns TLS_KEY appThreadRepresentitiveKey; UINT32 totalBuffersFilled = 0; UINT64 totalElementsProcessed = 0; /* * * APP_THREAD_REPRESENTITVE * * Each application thread, creates an object of this class and saves it in it's Pin TLS * slot (appThreadRepresentitiveKey). */ class APP_THREAD_REPRESENTITVE { public: APP_THREAD_REPRESENTITVE(THREADID tid); ~APP_THREAD_REPRESENTITVE(); VOID ProcessBuffer(VOID *buf, UINT64 numElements); UINT32 NumBuffersFilled() {return _numBuffersFilled;} UINT32 NumElementsProcessed() {return _numElementsProcessed;} private: UINT32 _numBuffersFilled; UINT32 _numElementsProcessed; }; APP_THREAD_REPRESENTITVE::APP_THREAD_REPRESENTITVE(THREADID tid) { _numBuffersFilled = 0; _numElementsProcessed = 0; } APP_THREAD_REPRESENTITVE::~APP_THREAD_REPRESENTITVE() { } VOID APP_THREAD_REPRESENTITVE::ProcessBuffer(VOID *buf, UINT64 numElements) { _numBuffersFilled++; //printf ("numElements %d\n", (UINT32)numElements); if (!KnobProcessBuffer ) { return; } struct MEMREF * memref=(struct MEMREF*)buf; struct MEMREF * firstMemref = memref; UINT64 until = numElements; for(UINT64 i=0; ipc += memref->pc + memref->ea; } _numElementsProcessed += (UINT32)until; //printf ("numElements processed %d\n", (UINT32)numElements); } /* * Insert code to write data to a thread-specific buffer for instructions * that access memory. */ VOID Trace(TRACE trace, VOID *v) { // Insert a call to record the effective address. for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl=BBL_Next(bbl)) { for(INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins=INS_Next(ins)) { UINT32 memOperands = INS_MemoryOperandCount(ins); // Iterate over each memory operand of the instruction. for (UINT32 memOp = 0; memOp < memOperands; memOp++) { INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_INST_PTR, offsetof(struct MEMREF, pc), IARG_MEMORYOP_EA, memOp, offsetof(struct MEMREF, ea), IARG_END); } } } } /************************************************************************** * * Callback Routines * **************************************************************************/ /*! * Called when a buffer fills up, or the thread exits, so we can process it or pass it off * as we see fit. * @param[in] id buffer handle * @param[in] tid id of owning thread * @param[in] ctxt application context * @param[in] buf actual pointer to buffer * @param[in] numElements number of records * @param[in] v callback value * @return A pointer to the buffer to resume filling. */ VOID * BufferFull(BUFFER_ID id, THREADID tid, const CONTEXT *ctxt, VOID *buf, UINT64 numElements, VOID *v) { APP_THREAD_REPRESENTITVE * appThreadRepresentitive = static_cast( PIN_GetThreadData( appThreadRepresentitiveKey, tid ) ); appThreadRepresentitive->ProcessBuffer(buf, numElements); return buf; } VOID ThreadStart(THREADID tid, CONTEXT *ctxt, INT32 flags, VOID *v) { // There is a new APP_THREAD_REPRESENTITVE for every thread. APP_THREAD_REPRESENTITVE * appThreadRepresentitive = new APP_THREAD_REPRESENTITVE(tid); // A thread will need to look up its APP_THREAD_REPRESENTITVE, so save pointer in TLS PIN_SetThreadData(appThreadRepresentitiveKey, appThreadRepresentitive, tid); } VOID ThreadFini(THREADID tid, const CONTEXT *ctxt, INT32 code, VOID *v) { APP_THREAD_REPRESENTITVE * appThreadRepresentitive = static_cast(PIN_GetThreadData(appThreadRepresentitiveKey, tid)); totalBuffersFilled += appThreadRepresentitive->NumBuffersFilled(); totalElementsProcessed += appThreadRepresentitive->NumElementsProcessed(); delete appThreadRepresentitive; PIN_SetThreadData(appThreadRepresentitiveKey, 0, tid); } VOID Fini(INT32 code, VOID *v) { return; printf ("totalBuffersFilled %u totalElementsProcessed %14.0f\n", (totalBuffersFilled), static_cast(totalElementsProcessed)); } INT32 Usage() { printf( "This tool demonstrates simple pin-tool buffer managing\n"); printf ("The following command line options are available:\n"); printf ("-num_pages_in_buffer :number of (4096byte) pages allocated in each buffer, default 256\n"); printf ("-process_buffs <0 or 1> :specify 0 to disable processing of the buffers, default 1\n"); return -1; } /*! * The main procedure of the tool. * This function is called when the application image is loaded but not yet started. * @param[in] argc total number of elements in the argv array * @param[in] argv array of command line arguments, * including pin -t -- ... */ int main(int argc, char *argv[]) { // Initialize PIN library. Print help message if -h(elp) is specified // in the command line or the command line is invalid if( PIN_Init(argc,argv) ) { return Usage(); } // Initialize the memory reference buffer //printf ("buffer size in bytes 0x%x\n", KnobNumPagesInBuffer.Value()*4096); // fflush (stdout); bufId = PIN_DefineTraceBuffer(sizeof(struct MEMREF), KnobNumPagesInBuffer, BufferFull, 0); if(bufId == BUFFER_ID_INVALID) { printf ("Error: could not allocate initial buffer\n"); return 1; } // Initialize thread-specific data not handled by buffering api. appThreadRepresentitiveKey = PIN_CreateThreadDataKey(0); // add an instrumentation function TRACE_AddInstrumentFunction(Trace, 0); // add callbacks PIN_AddThreadStartFunction(ThreadStart, 0); PIN_AddThreadFiniFunction(ThreadFini, 0); PIN_AddFiniFunction(Fini, 0); // Start the program, never returns PIN_StartProgram(); return 0; }