# 机器学习 * [简介](README.md) * [第1章:机器学习概述](machine_learning.md) * [1.1 什么是机器学习](what's machine_learning.md) * [1.2 机器学习常见术语](some term.md) * [1.3 机器学习项目流程](work flow.md) * [第2章:常见机器学习算法](algorithm.md) * [2.1 kNN](kNN.md) * [2.2 线性回归](linear_regression.md) * [2.3 逻辑回归](logistic_regression.md) * [2.4 多分类学习](multi-class-learning.md) * [2.5 决策树](decision_tree.md) * [2.6 随机森林](random_forest.md) * [2.7 朴素贝叶斯分类器](bayes.md) * [2.8 支持向量机](svm.md) * [2.9 kMeans](kMeans.md) * [2.10 AGNES](AGNES.md) * [第3章:模型评估指标](metrics.md) * [3.1 常用分类性能评估指标](classification_metrics.md) * [3.2 常用回归性能评估指标](regression_metrics.md) * [3.3 常用聚类性能评估指标](cluster_metrics.md) * [第4章:使用sklearn进行机器学习](sklearn.md) * [第5章:综合实战案例](xx introduction.md) * [5.1 泰坦尼克生还预测](./titanic/introduction.md) * [5.1.1 探索性数据分析(EDA)](./titanic/EDA.md) * [5.1.2 特征工程](./titanic/feature engerning.md) * [5.1.3 构建模型进行预测](./titanic/fit and predict.md) * [5.1.4 调参](./titanic/tuning.md) * [5.2 使用强化学习玩乒乓球游戏](./pingpong/introduction.md) * [5.2.1 什么是强化学习](./pingpong/what is reinforce learning.md) * [5.2.2 Policy Gradient原理](./pingpong/Policy Gradient.md) * [5.2.3 使用Policy Gradient玩乒乓球游戏](./pingpong/coding.md) * [实训推荐](recommand.md)