You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

602 lines
18 KiB

<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>简介 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="EDA.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
简介
</a>
</li>
<li class="chapter " data-level="1.2" data-path="../machine_learning.html">
<a href="../machine_learning.html">
机器学习概述
</a>
</li>
<li class="chapter " data-level="1.3" data-path="../algorithm.html">
<a href="../algorithm.html">
常见机器学习算法
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../kNN.html">
<a href="../kNN.html">
近朱者赤近墨者黑-kNN
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../linear_regression.html">
<a href="../linear_regression.html">
最简单的回归算法-线性回归
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../logistic_regression.html">
<a href="../logistic_regression.html">
使用回归的思想进行分类-逻辑回归
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../decision_tree.html">
<a href="../decision_tree.html">
最接近人类思维的算法-决策树
</a>
</li>
<li class="chapter " data-level="1.3.5" data-path="../random_forest.html">
<a href="../random_forest.html">
群众的力量是伟大的-随机森林
</a>
</li>
<li class="chapter " data-level="1.3.6" data-path="../kMeans.html">
<a href="../kMeans.html">
物以类聚人以群分-kMeans
</a>
</li>
<li class="chapter " data-level="1.3.7" data-path="../AGNES.html">
<a href="../AGNES.html">
以距离为尺-AGNES
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../metrics.html">
<a href="../metrics.html">
模型评估指标
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../classification_metrics.html">
<a href="../classification_metrics.html">
分类性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../regression_metrics.html">
<a href="../regression_metrics.html">
回归性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../cluster_metrics.html">
<a href="../cluster_metrics.html">
聚类性能评估指标
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../sklearn.html">
<a href="../sklearn.html">
使用sklearn进行机器学习
</a>
</li>
<li class="chapter " data-level="1.6" >
<span>
综合实战案例
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.1" >
<span>
泰坦尼克生还预测
</span>
<ul class="articles">
<li class="chapter active" data-level="1.6.1.1" data-path="introduction.html">
<a href="introduction.html">
简介
</a>
</li>
<li class="chapter " data-level="1.6.1.2" data-path="EDA.html">
<a href="EDA.html">
探索性数据分析(EDA)
</a>
</li>
<li class="chapter " data-level="1.6.1.3" data-path="feature engerning.html">
<a href="feature engerning.html">
特征工程
</a>
</li>
<li class="chapter " data-level="1.6.1.4" data-path="fit and predict.html">
<a href="fit and predict.html">
构建模型进行预测
</a>
</li>
<li class="chapter " data-level="1.6.1.5" data-path="tuning.html">
<a href="tuning.html">
调参
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6.2" >
<span>
使用强化学习玩乒乓球游戏
</span>
<ul class="articles">
<li class="chapter " data-level="1.6.2.1" data-path="../pingpong/what is reinforce learning.html">
<a href="../pingpong/what is reinforce learning.html">
什么是强化学习
</a>
</li>
<li class="chapter " data-level="1.6.2.2" data-path="../pingpong/Policy Gradient.html">
<a href="../pingpong/Policy Gradient.html">
Policy Gradient原理
</a>
</li>
<li class="chapter " data-level="1.6.2.3" data-path="../pingpong/coding.html">
<a href="../pingpong/coding.html">
使用Policy Gradient玩乒乓球游戏
</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="../recommand.html">
<a href="../recommand.html">
实训推荐
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >简介</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="&#x5199;&#x5728;&#x524D;&#x9762;&#x7684;&#x8BDD;">&#x5199;&#x5728;&#x524D;&#x9762;&#x7684;&#x8BDD;</h1>
<p>&#x600E;&#x6837;&#x5904;&#x7406;&#x6570;&#x636E;&#xFF0C;&#x4F7F;&#x7528;&#x4EC0;&#x4E48;&#x6837;&#x7684;&#x673A;&#x5668;&#x5B66;&#x4E60;&#x6A21;&#x578B;&#x5E76;&#x6CA1;&#x6709;&#x6240;&#x8C13;&#x7684;&#x6B63;&#x786E;&#x7B54;&#x6848;&#x3002;&#x8FD9;&#x7BC7;&#x6587;&#x7AE0;&#x53EA;&#x662F;&#x629B;&#x7816;&#x5F15;&#x7389;&#xFF0C;&#x82E5;&#x60A8;&#x662F;&#x521A;&#x521A;&#x63A5;&#x89E6;&#x6570;&#x636E;&#x79D1;&#x5B66;&#xFF0C;&#x6211;&#x76F8;&#x4FE1;&#x8FD9;&#x4E00;&#x7BC7;&#x4E0D;&#x9519;&#x7684;&#x6307;&#x5F15;&#xFF1B;&#x82E5;&#x60A8;&#x5DF2;&#x7ECF;&#x662F;&#x8001;&#x624B;&#xFF0C;&#x6211;&#x76F8;&#x4FE1;&#x6587;&#x4E2D;&#x7684;&#x4E00;&#x4E9B;&#x6280;&#x5DE7;&#x60A8;&#x80AF;&#x5B9A;&#x4E5F;&#x7528;&#x8FC7;&#xFF0C;&#x53EF;&#x4EE5;&#x6E29;&#x6545;&#x800C;&#x77E5;&#x65B0;&#xFF1B;&#x6240;&#x4EE5;&#x5E0C;&#x671B;&#x8FD9;&#x7BC7;&#x6587;&#x7AE0;&#x5BF9;&#x60A8;&#x6216;&#x591A;&#x6216;&#x5C11;&#x7684;&#x6709;&#x6240;&#x5E2E;&#x52A9;&#x3002;</p>
<h1 id="&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x751F;&#x8FD8;&#x95EE;&#x9898;&#x7B80;&#x4ECB;">&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x751F;&#x8FD8;&#x95EE;&#x9898;&#x7B80;&#x4ECB;</h1>
<p>&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x53F7;&#x7684;&#x6C89;&#x8239;&#x4E8B;&#x4EF6;&#x662F;&#x662F;&#x5386;&#x53F2;&#x4E0A;&#x6700;&#x81ED;&#x540D;&#x662D;&#x8457;&#x7684;&#x6C89;&#x8239;&#x4E8B;&#x4EF6;&#x4E4B;&#x4E00;&#x3002;1912&#x5E74;4&#x6708;15&#x65E5;&#xFF0C;&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x5728;&#x822A;&#x7EBF;&#x4E2D;&#x4E0E;&#x51B0;&#x5C71;&#x76F8;&#x649E;&#xFF0C;2224 &#x540D;&#x4E58;&#x5BA2;&#x4E2D;&#x6709; 1502 &#x540D;&#x4E58;&#x5BA2;&#x4E27;&#x751F;&#x3002;</p>
<p>&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x53F7;&#x6570;&#x636E;&#x96C6;&#x662F;&#x76EE;&#x6807;&#x662F;&#x7ED9;&#x51FA;&#x4E00;&#x4E2A;&#x6A21;&#x578B;&#x6765;&#x9884;&#x6D4B;&#x67D0;&#x4F4D;&#x6CF0;&#x5766;&#x5C3C;&#x514B;&#x53F7;&#x7684;&#x4E58;&#x5BA2;&#x5728;&#x6C89;&#x8239;&#x4E8B;&#x4EF6;&#x4E2D;&#x662F;&#x751F;&#x8FD8;&#x662F;&#x6B7B;&#x3002;&#x800C;&#x4E14;&#x8BE5;&#x6570;&#x636E;&#x96C6;&#x662F;&#x4E00;&#x4E2A;&#x975E;&#x5E38;&#x597D;&#x7684;&#x6570;&#x636E;&#x96C6;&#xFF0C;&#x80FD;&#x591F;&#x8BA9;&#x60A8;&#x5FEB;&#x901F;&#x7684;&#x5F00;&#x59CB;&#x6570;&#x636E;&#x79D1;&#x5B66;&#x4E4B;&#x65C5;&#x3002;</p>
<p><img src="../img/59.jpg" alt=""></p>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="EDA.html" class="navigation navigation-next navigation-unique" aria-label="Next page: 探索性数据分析(EDA)">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"简介","level":"1.6.1.1","depth":3,"next":{"title":"探索性数据分析(EDA)","level":"1.6.1.2","depth":3,"path":"titanic/EDA.md","ref":"./titanic/EDA.md","articles":[]},"previous":{"title":"泰坦尼克生还预测","level":"1.6.1","depth":2,"ref":"","articles":[{"title":"简介","level":"1.6.1.1","depth":3,"path":"titanic/introduction.md","ref":"./titanic/introduction.md","articles":[]},{"title":"探索性数据分析(EDA)","level":"1.6.1.2","depth":3,"path":"titanic/EDA.md","ref":"./titanic/EDA.md","articles":[]},{"title":"特征工程","level":"1.6.1.3","depth":3,"path":"titanic/feature engerning.md","ref":"./titanic/feature engerning.md","articles":[]},{"title":"构建模型进行预测","level":"1.6.1.4","depth":3,"path":"titanic/fit and predict.md","ref":"./titanic/fit and predict.md","articles":[]},{"title":"调参","level":"1.6.1.5","depth":3,"path":"titanic/tuning.md","ref":"./titanic/tuning.md","articles":[]}]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["katex"],"pluginsConfig":{"katex":{},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"titanic/introduction.md","mtime":"2019-07-05T01:18:54.983Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-06T07:31:21.537Z"},"basePath":"..","book":{"language":""}});
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
</body>
</html>