You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

631 lines
20 KiB

<!DOCTYPE html>
<html>
<head>
<title>Dynamic Preview of Textarea with MathJax Content</title>
<!-- Copyright (c) 2012-2018 The MathJax Consortium -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<style>
.changed { color: red }
</style>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
equationNumbers: {autoNumber: "AMS"},
extensions: ["begingroup.js"],
noErrors: {disabled: true}
},
showProcessingMessages: false,
tex2jax: { inlineMath: [['$','$'],['\\(','\\)']] }
});
//MathJax.Hub.signal.Interest(function (message) {console.log(message)});
</script>
<script type="text/javascript" src="../MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script>
var Preview = {
typeset: null, // the typeset preview area (filled in by Init below)
preview: null, // the untypeset preview (filled in by Init below)
buffer: null, // the new preview to be typeset (filled in by Init below)
par: [], // paragraph-specific data
refs: [], // undefined references needing to be reprocessed
updateNeeded: 0, // number of paragraphs needing update
oldtext: '', // used to see if an update is needed
pending: false, // true when a restart is in the MathJax queue
classDelay: 400, // how long to leave changed paragraphs colored
ctimeout: null, // timeout for changed style remover
labelDelay: 1250, // how long to wait before reprocessing for label changes
ltimeout: null, // timeout for changed labels
keytimes: [], // tracks the times between keypresses
keyrate: 100, // the average of the keytimes (default value)
keyn: 0, // key index to replace next
keysize: 10, // use this many keypresses
//
// Get the preview and buffer DIV's
//
Init: function () {
this.typeset = document.getElementById("MathPreview");
this.buffer = document.createElement("div");
this.preview = document.createElement("div");
for (var i = 0; i < this.keysize; i++) {this.keytimes[i] = this.keyrate}
},
//
// This gets called when a key is pressed in the textarea.
//
Update: function (up) {
if (up) {
//
// Determine the typing speed as a rolling average of the last few keystrokes
//
var time = new Date().getTime();
if (this.lasttime) {
var delta = time - this.lasttime;
if (delta < 4*this.keyrate) {
this.keyrate = (this.keysize*this.keyrate+delta-this.keytimes[this.keyn])/this.keysize;
this.keytimes[this.keyn++] = delta;
if (this.keyn === this.keysize) {this.keyn = 0}
}
}
this.lasttime = time;
}
var text = document.getElementById("MathInput").value;
text = text.replace(/^\s+/,'').replace(/\s+$/,'').replace(/\r\n?/g,"\n");
if (text !== this.oldtext) {
this.oldtext = text;
if (!this.pending) {
this.pending = true;
if (this.ctimeout) {clearTimeout(this.ctimeout); this.ctimeout = null}
if (this.ltimeout) {clearTimeout(this.ltimeout); this.ltimeout = null}
MathJax.Hub.Queue(
// allow a little time for additional typing
["Delay",MathJax.Callback,Math.min(200,Math.floor(this.keyrate/2)+1)],
["Restart",this]
);
}
}
},
Restart: function () {
this.pending = false;
var text = this.oldtext.replace(/&/g,'&amp;').replace(/</g,'&lt;').replace(/>/g,'&gt;');
var text = text.replace(/\n\n+/g,"<p>");
this.buffer.innerHTML = text;
var update = this.CompareBuffers();
if (update.needed) {
MathJax.Hub.Queue(
["CopyChanges",this,update],
["PreTypeset",this,update],
["Typeset",this,update],
["PostTypeset",this,update]
);
}
},
CompareBuffers: function () {
var b1 = this.buffer.childNodes,
b2 = this.preview.childNodes,
i, m1 = b1.length, m2 = b2.length, m = Math.min(m1,m2);
//
// Make sure all top-level elements are containers
//
for (i = 0; i < m1; i++) {
var node = b1[i];
if (typeof(node.innerHTML) === "undefined") {
this.buffer.replaceChild(document.createElement("span"),node);
b1[i].appendChild(node);
}
}
//
// Find first non-matching element, if any,
// and the last non-matching element
//
for (i = 0; i < m; i++) {if (b1[i].innerHTML !== b2[i].innerHTML) break}
if (i === m && m1 === m2) {return {needed: false}}
while (m1 > i && m2 > i) {if (b1[--m1].innerHTML !== b2[--m2].innerHTML) break}
return {needed:true, start:i, end1:m1, end2:m2};
},
CopyChanges: function (update) {
var i = update.start, m1 = update.end1, m2 = update.end2;
var b1 = this.buffer.childNodes,
b2 = this.typeset.childNodes;
update.indices = []; update.nodes = []; update.replace = true;
//
// Remove differing elements from typeset copy
// and add in the new (untypeset) elements.
//
this.recordOldData(this.par.splice(i,m2+1-i)); var tail = b2[m2+1];
while (m2 >= i && b2[i]) {this.typeset.removeChild(b2[i]); m2--}
while (i <= m1 && b1[i]) {
this.par.splice(i,0,{number:0, labels:[], defs:[], refs:[], replaced:true, update:true});
var node = b1[i].cloneNode(true); update.nodes.push(node);
update.indices.push(i++); this.updateNeeded++;
if (tail) {this.typeset.insertBefore(node,tail)} else {this.typeset.appendChild(node)}
this.addChanged(node);
}
//
// Swap buffers and set up the new buffer for the next change
//
this.preview = this.buffer; this.buffer = document.createElement("div");
},
PreTypeset: function (update) {
var TEX = MathJax.InputJax.TeX;
this.incremental = true;
this.i = this.j = 0; this.eqNum = 0;
this.update = update.indices;
this.replace = update.replace;
//
// Pop any left over \begingroups and push a new one
// Reset the equation numbers (but not labels)
//
while (TEX.rootStack.top > 1) {TEX.rootStack.stack.pop(); TEX.rootStack.top--}
TEX.rootStack.Push(TEX.nsStack.nsFrame());
},
recordOldData: function (par) {
var AMS = MathJax.Extension["TeX/AMSmath"];
var labels = [], defs = [];
this.oldnumber = 0;
for (var i = 0, m = par.length; i < m; i++) {
this.oldnumber += par[i].number;
defs.push(par[i].defs.all);
for (var j = 0, n = par[i].labels.length; j < n; j++) {
delete AMS.labels[par[i].labels[j].split(/=/)[0]];
labels.push(par[i].labels[j]);
}
}
this.oldlabels = labels.join('');
this.olddefs = defs.join('');
},
Typeset: function (update) {
return MathJax.Hub.Typeset(update.nodes,{});
},
BeginMath: function () {
//
// Save the start time for this paragraph
//
this.time = new Date().getTime();
},
BeginInput: function () {
//
// Skip any paragraphs that aren't being updated, and
// update the equation numbers and macro definitions
// accordingly
//
var TEX = MathJax.InputJax.TeX, par;
while (this.i < this.update[this.j]) {
par = this.par[this.i++];
this.eqNum += par.number;
for (i = 0, m = par.defs.length; i < m; i++) {
TEX.rootStack.Def.apply(TEX.rootStack,par.defs[i]);
}
}
TEX.resetEquationNumbers(this.eqNum,true);
//
// Store new macro and label definitions here
//
par = this.par[this.i];
if (par) {
if (!par.replaced) {par.olddefs = par.defs.all; par.oldlabels = par.labels.join('')}
par.defs = []; par.defs.all = [];
par.labels = [];
}
},
TeXFilter: function (data) {
//
// Get any new labels for this paragraph
//
var AMS = MathJax.Extension["TeX/AMSmath"];
var labels = this.par[this.i].labels;
for (var id in AMS.eqlabels) {if (AMS.eqlabels.hasOwnProperty(id)) {
labels.push(id+"="+AMS.eqlabels[id])
}}
},
TeXDef: function (def) {
var defs = this.par[this.i].defs;
defs.push(def);
defs.all.push(def[0]+"{"+def[1]+"}");
},
EndInput: function () {
//
// Record the undefined references,
// the new definitions, and the equation number
// for this paragraph
//
var AMS = MathJax.Extension["TeX/AMSmath"];
var par = this.par[this.i];
if (par) {
par.refs = AMS.refs; AMS.refs = [];
par.defs.all = par.defs.all.join("");
par.number = AMS.startNumber - this.eqNum;
this.eqNum = AMS.startNumber;
if (!par.replaced) {
delete par.update;
if (par.defs.all !== par.olddefs) {this.refreshRest = true}
if (par.labels.join('') !== par.oldlabels) {
// ### cancel typesetting and do all paragraphs
this.refreshAll = true;
}
delete par.olddefs; delete par.oldlabels;
}
}
},
EndMath: function () {
//
// Record the tie it took for this paragraph
// and go on to the next one.
//
var par = (this.par[this.i]||{});
var time = new Date().getTime();
par.time = time - this.time; this.time = time;
delete par.update; this.updateNeeded--;
this.j++; this.i++;
},
PostTypeset: function (update) {
var incremental = this.incremental; this.incremental = false;
// ### if cancelled return?
//
// Check if there are undefined references that might have been
// defined in this update, and reprocess if so.
//
for (var i = 0, m = this.update.length; i < m; i++) {
var par = this.par[this.update[i]];
if (par.refs.length) {this.refs = this.refs.concat(par.refs); par.refs = []}
}
if (incremental && this.refs.length) {
var queue = MathJax.Callback.Queue(
["Reprocess",MathJax.Hub,this.refs,{}],
function () {/* if not cancelled */ this.refs = []}
);
return queue.Push(["PostTypeset",this,update]);
}
//
// Set the timer for the color removal
//
this.ctimeout = setTimeout(this.Unmark,this.classDelay);
//
//
var labels = [], defs = [], number = 0;
if (this.replace) {
for (i = 0, m = this.update.length; i < m; i++) {
var par = this.par[this.update[i]];
if (par.replaced) {
labels = labels.concat(par.labels.join(''));
defs = defs.concat(par.defs.all);
number += par.number;
delete par.replaced;
}
}
this.loopCount = 0; // avoid any possibility of infinite loop
// (shouldn't happen anyway, but I'm paranoid)
}
if (update.nodes.length !== this.preview.childNodes.length) {
if (this.refreshAll || labels.join('') !== this.oldlabels) {
this.MarkForUpdate(0); this.refreshAll = this.refreshRest = false;
} else if (this.refreshRest || number !== this.oldnumber || defs.join('') !== this.olddefs) {
this.MarkForUpdate(this.i); this.refreshRest = false;
}
if (this.updateNeeded && this.loopCount++ < 10) {
var delay = Math.min(this.labelDelay,3*this.keyRate);
if (this.getTime() < 2*this.keyrate) {this.Refresh()}
else {this.ltimeout = setTimeout(this.Refresh,delay)}
}
}
},
MarkForUpdate: function (i) {
for (var m = this.par.length; i < m; i++) {
if (!this.par[i].update) {this.par[i].update = true; this.updateNeeded++}
}
},
GetMarked: function () {
var AMS = MathJax.Extension["TeX/AMSmath"];
var nodes = [], indices = [], par = this.par;
for (var i = 0, m = par.length; i < m; i++) {
if (par[i].update) {
var node = this.typeset.childNodes[i];
nodes.push(node); indices.push(i);
this.addChanged(node);
for (var j = 0, n = par[i].labels.length; j < n; j++) {
delete AMS.labels[par[i].labels[j].split(/=/)[0]];
}
}
}
return {nodes:nodes, indices:indices};
},
Unmark: function () {
Preview.ctimeout = null; var nodes = Preview.typeset.childNodes;
for (var i = 0, m = nodes.length; i < m; i++) {Preview.removeChanged(nodes[i])}
},
Refresh: function () {
var update = Preview.GetMarked();
this.oldlabels = this.olddefs = ""; this.oldnumber = 0;
if (update.nodes.length) {
MathJax.Hub.Queue(
["PreTypeset",Preview,update],
["Reprocess",MathJax.Hub,update.nodes,{}],
["PostTypeset",Preview,update]
);
}
},
getTime: function () {
var time = 0, i = 0, m = this.par.length;
while (i < m) {if (this.par[i].update) {time += this.par[i].time}; i++}
return time;
},
//
// Remove the "changed" class from an element (leaving all other classes)
//
removeChanged: function (node) {
if (node.className) {
node.className = node.className.toString()
.replace(/(^|\s+)changed(\s|$)/,"$2")
.replace(/^\s+/,"");
}
},
addChanged: function (node) {
if (node.className && node.className != "")
{node.className += " changed"} else {node.className = "changed"}
}
};
//
// Hook into the math signals
//
MathJax.Hub.Register.MessageHook("Begin Math",function () {
if (Preview.incremental) {Preview.BeginMath()}
});
MathJax.Hub.Register.MessageHook("End Math",function () {
if (Preview.incremental) {Preview.EndMath()}
});
MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () {
MathJax.InputJax.TeX.postfilterHooks.Add(function (data) {
if (Preview.incremental) {Preview.TeXFilter(data)}
});
});
MathJax.Hub.Register.MessageHook("Begin Math Input",function () {
if (Preview.incremental) {Preview.BeginInput()}
});
MathJax.Hub.Register.MessageHook("End Math Input",function () {
if (Preview.incremental) {Preview.EndInput()}
},5); // priority = 5 to make sure it is before AMS.eqlabels are removed.
//
// Hook into the definition routines to record
// new definitions that occur.
//
MathJax.Hub.Register.StartupHook("TeX begingroup Ready",function () {
var STACK = MathJax.InputJax.TeX.eqnStack;
var DEF = STACK.Def;
STACK.Def = function () {
if (Preview.incremental) {Preview.TeXDef([].slice.call(arguments,0))}
DEF.apply(this,arguments);
}
//
// Temporary hack to fix typo in begingroup.js
//
MathJax.InputJax.TeX.rootStack.stack[0].environments =
MathJax.InputJax.TeX.Definitions.environment;
});
</script>
</head>
<body>
Type text with embedded TeX in the box below:<br/>
<textarea id="MathInput" cols="60" rows="10" onkeyup="Preview.Update(true)" onkeydown="Preview.Update()" style="margin-top:5px">
There must be some missing constraints. If $\alpha_n$ is allowed to be negative, we get the following counterexample. $\smash{\rlap{\phantom{\Bigg(}}}$
Define
$$
u_{n+1}=(1-\alpha_n)u_n+\beta_n\tag{1}
$$
and
$$
A_n=\prod_{k=1}^{n-1}(1-\alpha_k)\tag{2}
$$
By induction, it can be verified that
$$
u_n=A_n\left(u_1+\sum_{k=1}^{n-1}\frac{\beta_k}{A_{k+1}}\right)\tag{3}
$$
For $j\ge1$, define
$$
n_j=\left\{\begin{array}{}
2^{j(j-1)/2}&\text{when }j\text{ is odd}\\
2^{j(j-1)/2+1}&\text{when }j\text{ is even}
\end{array}\right.\tag{4}
$$
and for $n\ge1$,
$$
\alpha_n=\left\{\begin{array}{}
\frac{1}{n+1}&\text{for }n_j\le n< n_{j+1}\text{ when }j\text{ is odd}\\
-\frac1n&\text{for }n_j\le n< n_{j+1}\text{ when }j\text{ is even}
\end{array}\right.\tag{5}
$$
Obviously, $\displaystyle\lim_{n\to\infty}\alpha_n=0$.
Using telescoping products, it is not difficult to show that
$$
\frac{A_{n_{j+1}}}{A_{n_j}}=\left\{\begin{array}{}
\frac{n_j}{n_{j+1}}=2^{-j-1}&\text{when }j\text{ is odd}\\
\frac{n_{j+1}}{n_j}=2^{j-1}&\text{when }j\text{ is even}
\end{array}\right.\tag{6}
$$
Equation $(6)$ yields
$$
A_{n_j}=\left\{\begin{array}{}
2^{-(j-1)/2}&\text{when }j\text{ is odd}\\
2^{-(3j-2)/2}&\text{when }j\text{ is even}
\end{array}\right.\tag{7}
$$
Furthermore, using the standard formula for the partial harmonic series, when $j$ is odd,
$$
\begin{align}
\sum_{n=n_j}^{n_{j+1}-1}\alpha_n
&=\log\left(\frac{n_{j+1}}{n_j}\right)+O\left(\frac{1}{n_j}\right)\\
&=(j+1)\log(2)+O\left(2^{-j(j-1)/2}\right)\tag{8}
\end{align}
$$
and when $j$ is even,
$$
\begin{align}
\sum_{n=n_j}^{n_{j+1}-1}\alpha_n
&=-\log\left(\frac{n_{j+1}}{n_j}\right)+O\left(\frac{1}{n_j}\right)\\
&=-(j-1)\log(2)+O\left(2^{-j(j-1)/2}\right)\tag{9}
\end{align}
$$
Combining $(8)$ and $(9)$ yields
$$
\sum_{n=1}^{n_j-1}\alpha_n=\left\{\begin{array}{}
\frac{j-1}{2}\log(2)+O(1)&\text{when }j\text{ is odd}\\
\frac{3j-2}{2}\log(2)+O(1)&\text{when }j\text{ is even}
\end{array}\right.\tag{10}
$$
Equation $(10)$ says that $\displaystyle\sum_{n=1}^\infty\alpha_n=\infty$.
Define
$$
\beta_n=\left\{\begin{array}{}
2^{-j}&\text{when }n=n_j-1\text{ for }j\text{ even}\\
0&\text{otherwise}
\end{array}\right.\tag{11}
$$
Summing the geometric series yields $\displaystyle\sum_{n=1}^\infty\beta_n=\frac13$.
Using $(3)$, we get
$$
\begin{align}
u_{n_{j+1}}
&=A_{n_{j+1}}\left(u_1+\sum_{k=1}^{n_{j+1}-1}\frac{\beta_k}{A_{k+1}}\right)\\
&\ge\frac{A_{n_{j+1}}}{A_{n_j}}\beta_{n_j-1}\\
&=2^{j-1}\cdot2^{-j}\\
&=\frac12\tag{12}
\end{align}
$$
when $j$ is even. $(12)$ says that $\displaystyle\lim_{n\to\infty}u_n\not=0$.
</textarea>
<br/><br/>
<div id="MoreMath"></div>
Preview is shown here:
<div id="MathPreview" style="border:1px solid; padding: 3px; width:50%; margin-top:5px"></div>
<div style="display:none">Force loading: $x$</div>
<script>
Preview.Init();
MathJax.Hub.Queue(["Update",Preview]);
</script>
</body>
</html>
<!--
| There must be some missing constraints. If $\alpha_n$ is allowed to be negative, we get the following counterexample. $\smash{\rlap{\phantom{\Bigg(}}}$
|
| Define
| $$
| u_{n+1}=(1-\alpha_n)u_n+\beta_n\tag{1}
| $$
| and
| $$
| A_n=\prod_{k=1}^{n-1}(1-\alpha_k)\tag{2}
| $$
| By induction, it can be verified that
| $$
| u_n=A_n\left(u_1+\sum_{k=1}^{n-1}\frac{\beta_k}{A_{k+1}}\right)\tag{3}
| $$
| For $j\ge1$, define
| $$
| n_j=\left\{\begin{array}{}
| 2^{j(j-1)/2}&\text{when }j\text{ is odd}\\
| 2^{j(j-1)/2+1}&\text{when }j\text{ is even}
| \end{array}\right.\tag{4}
| $$
| and for $n\ge1$,
| $$
| \alpha_n=\left\{\begin{array}{}
| \frac{1}{n+1}&\text{for }n_j\le n< n_{j+1}\text{ when }j\text{ is odd}\\
| -\frac1n&\text{for }n_j\le n< n_{j+1}\text{ when }j\text{ is even}
| \end{array}\right.\tag{5}
| $$
| Obviously, $\displaystyle\lim_{n\to\infty}\alpha_n=0$.
|
| Using telescoping products, it is not difficult to show that
| $$
| \frac{A_{n_{j+1}}}{A_{n_j}}=\left\{\begin{array}{}
| \frac{n_j}{n_{j+1}}=2^{-j-1}&\text{when }j\text{ is odd}\\
| \frac{n_{j+1}}{n_j}=2^{j-1}&\text{when }j\text{ is even}
| \end{array}\right.\tag{6}
| $$
| Equation $(6)$ yields
| $$
| A_{n_j}=\left\{\begin{array}{}
| 2^{-(j-1)/2}&\text{when }j\text{ is odd}\\
| 2^{-(3j-2)/2}&\text{when }j\text{ is even}
| \end{array}\right.\tag{7}
| $$
| Furthermore, using the standard formula for the partial harmonic series, when $j$ is odd,
| $$
| \begin{align}
| \sum_{n=n_j}^{n_{j+1}-1}\alpha_n
| &=\log\left(\frac{n_{j+1}}{n_j}\right)+O\left(\frac{1}{n_j}\right)\\
| &=(j+1)\log(2)+O\left(2^{-j(j-1)/2}\right)\tag{8}
| \end{align}
| $$
| and when $j$ is even,
| $$
| \begin{align}
| \sum_{n=n_j}^{n_{j+1}-1}\alpha_n
| &=-\log\left(\frac{n_{j+1}}{n_j}\right)+O\left(\frac{1}{n_j}\right)\\
| &=-(j-1)\log(2)+O\left(2^{-j(j-1)/2}\right)\tag{9}
| \end{align}
| $$
| Combining $(8)$ and $(9)$ yields
| $$
| \sum_{n=1}^{n_j-1}\alpha_n=\left\{\begin{array}{}
| \frac{j-1}{2}\log(2)+O(1)&\text{when }j\text{ is odd}\\
| \frac{3j-2}{2}\log(2)+O(1)&\text{when }j\text{ is even}
| \end{array}\right.\tag{10}
| $$
| Equation $(10)$ says that $\displaystyle\sum_{n=1}^\infty\alpha_n=\infty$.
|
| Define
| $$
| \beta_n=\left\{\begin{array}{}
| 2^{-j}&\text{when }n=n_j-1\text{ for }j\text{ even}\\
| 0&\text{otherwise}
| \end{array}\right.\tag{11}
| $$
| Summing the geometric series yields $\displaystyle\sum_{n=1}^\infty\beta_n=\frac13$.
|
| Using $(3)$, we get
| $$
| \begin{align}
| u_{n_{j+1}}
| &=A_{n_{j+1}}\left(u_1+\sum_{k=1}^{n_{j+1}-1}\frac{\beta_k}{A_{k+1}}\right)\\
| &\ge\frac{A_{n_{j+1}}}{A_{n_j}}\beta_{n_j-1}\\
| &=2^{j-1}\cdot2^{-j}\\
| &=\frac12\tag{12}
| \end{align}
| $$
| when $j$ is even. $(12)$ says that $\displaystyle\lim_{n\to\infty}u_n\not=0$.
-->