You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
20 KiB
558 lines
20 KiB
|
|
<!DOCTYPE HTML>
|
|
<html lang="" >
|
|
<head>
|
|
<meta charset="UTF-8">
|
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
|
<title>近朱者赤近墨者黑-kNN · GitBook</title>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
|
<meta name="description" content="">
|
|
<meta name="generator" content="GitBook 3.2.3">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/style.css">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-highlight/website.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-search/search.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="gitbook/gitbook-plugin-fontsettings/website.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<meta name="HandheldFriendly" content="true"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
|
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
|
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="gitbook/images/apple-touch-icon-precomposed-152.png">
|
|
<link rel="shortcut icon" href="gitbook/images/favicon.ico" type="image/x-icon">
|
|
|
|
|
|
<link rel="next" href="linear_regression.html" />
|
|
|
|
|
|
<link rel="prev" href="algorithm.html" />
|
|
|
|
|
|
</head>
|
|
<body>
|
|
|
|
<div class="book">
|
|
<div class="book-summary">
|
|
|
|
|
|
<div id="book-search-input" role="search">
|
|
<input type="text" placeholder="Type to search" />
|
|
</div>
|
|
|
|
|
|
<nav role="navigation">
|
|
|
|
|
|
|
|
<ul class="summary">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.1" data-path="./">
|
|
|
|
<a href="./">
|
|
|
|
|
|
简介
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2" data-path="machine_learning.html">
|
|
|
|
<a href="machine_learning.html">
|
|
|
|
|
|
机器学习概述
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3" data-path="algorithm.html">
|
|
|
|
<a href="algorithm.html">
|
|
|
|
|
|
常见机器学习算法
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter active" data-level="1.3.1" data-path="kNN.html">
|
|
|
|
<a href="kNN.html">
|
|
|
|
|
|
近朱者赤近墨者黑-kNN
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.2" data-path="linear_regression.html">
|
|
|
|
<a href="linear_regression.html">
|
|
|
|
|
|
最简单的回归算法-线性回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.3" data-path="logistic_regression.html">
|
|
|
|
<a href="logistic_regression.html">
|
|
|
|
|
|
使用回归的思想进行分类-逻辑回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.4" data-path="decision_tree.html">
|
|
|
|
<a href="decision_tree.html">
|
|
|
|
|
|
最接近人类思维的算法-决策树
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.5" data-path="random_forest.html">
|
|
|
|
<a href="random_forest.html">
|
|
|
|
|
|
群众的力量是伟大的-随机森林
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.6" data-path="kMeans.html">
|
|
|
|
<a href="kMeans.html">
|
|
|
|
|
|
物以类聚人以群分-kMeans
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.7" data-path="AGNES.html">
|
|
|
|
<a href="AGNES.html">
|
|
|
|
|
|
以距离为尺-AGNES
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4" data-path="metrics.html">
|
|
|
|
<a href="metrics.html">
|
|
|
|
|
|
模型评估指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.4.1" data-path="classification_metrics.html">
|
|
|
|
<a href="classification_metrics.html">
|
|
|
|
|
|
分类性能评估指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.2" data-path="regression_metrics.html">
|
|
|
|
<a href="regression_metrics.html">
|
|
|
|
|
|
回归性能评估指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.3" data-path="cluster_metrics.html">
|
|
|
|
<a href="cluster_metrics.html">
|
|
|
|
|
|
聚类性能评估指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5" data-path="sklearn.html">
|
|
|
|
<a href="sklearn.html">
|
|
|
|
|
|
使用sklearn进行机器学习
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="divider"></li>
|
|
|
|
<li>
|
|
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
|
|
Published with GitBook
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
</div>
|
|
|
|
<div class="book-body">
|
|
|
|
<div class="body-inner">
|
|
|
|
|
|
|
|
<div class="book-header" role="navigation">
|
|
|
|
|
|
<!-- Title -->
|
|
<h1>
|
|
<i class="fa fa-circle-o-notch fa-spin"></i>
|
|
<a href="." >近朱者赤近墨者黑-kNN</a>
|
|
</h1>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div class="page-wrapper" tabindex="-1" role="main">
|
|
<div class="page-inner">
|
|
|
|
<div id="book-search-results">
|
|
<div class="search-noresults">
|
|
|
|
<section class="normal markdown-section">
|
|
|
|
<h1 id="近朱者赤近墨者黑-knn">近朱者赤近墨者黑-kNN</h1>
|
|
<p><strong>kNN算法</strong>其实是众多机器学习算法中最简单的一种,因为该算法的思想完全可以用 8 个字来概括:<strong>“近朱者赤,近墨者黑”</strong>。</p>
|
|
<h2 id="knn算法解决分类问题">kNN算法解决分类问题</h2>
|
|
<p>假设现在有这样的一个样本空间(由样本组成的一个空间),该样本空间里有宅男和文艺青年这两个类别,其中红圈表示宅男,绿圈表示文艺青年。如下图所示:</p>
|
|
<p><img src="img/8.jpg" alt=""></p>
|
|
<p>其实构建出这样的样本空间的过程就是<strong>kNN算法</strong>的训练过程。可想而知<strong>kNN算法</strong>是没有训练过程的,所以<strong>kNN算法</strong>属于懒惰学习算法。</p>
|
|
<p>假设我在这个样本空间中用黄圈表示,如下图所示:</p>
|
|
<p><img src="img/9.jpg" alt=""></p>
|
|
<p>现在使用<strong>kNN算法</strong>来鉴别一下我是宅男还是文艺青年。首先需要计算我与样本空间中所有样本的距离。假设计算得到的距离表格如下:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>样本编号</th>
|
|
<th>1</th>
|
|
<th>2</th>
|
|
<th>...</th>
|
|
<th>13</th>
|
|
<th>14</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>标签</td>
|
|
<td>宅男</td>
|
|
<td>宅男</td>
|
|
<td>...</td>
|
|
<td>文艺青年</td>
|
|
<td>文艺青年</td>
|
|
</tr>
|
|
<tr>
|
|
<td>距离</td>
|
|
<td>11.2</td>
|
|
<td>9.5</td>
|
|
<td>...</td>
|
|
<td>23.3</td>
|
|
<td>37.6</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>然后找出与我距离最小的 k 个样本( k 是一个超参数,需要自己设置,一般默认为 5 ),假设与我离得最近的 5 个样本的标签和距离如下:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>样本编号</th>
|
|
<th>4</th>
|
|
<th>5</th>
|
|
<th>6</th>
|
|
<th>7</th>
|
|
<th>8</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>标签</td>
|
|
<td>宅男</td>
|
|
<td>宅男</td>
|
|
<td>宅男</td>
|
|
<td>宅男</td>
|
|
<td>文艺青年</td>
|
|
</tr>
|
|
<tr>
|
|
<td>距离</td>
|
|
<td>11.2</td>
|
|
<td>9.5</td>
|
|
<td>7.7</td>
|
|
<td>5.8</td>
|
|
<td>15.2</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>最后只需要对这 5 个样本的标签进行统计,并将票数最多的标签作为预测结果即可。如上表中,宅男是 4 票,文艺青年是 1 票,所以我是宅男。</p>
|
|
<p><strong>注意</strong>:有的时候可能会有票数一致的情况,比如 k = 4 时与我离得最近的样本如下:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>样本编号</th>
|
|
<th>4</th>
|
|
<th>9</th>
|
|
<th>11</th>
|
|
<th>13</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>标签</td>
|
|
<td>宅男</td>
|
|
<td>宅男</td>
|
|
<td>文艺青年</td>
|
|
<td>文艺青年</td>
|
|
</tr>
|
|
<tr>
|
|
<td>距离</td>
|
|
<td>4.2</td>
|
|
<td>9.5</td>
|
|
<td>7.7</td>
|
|
<td>5.8</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>可以看出宅男和文艺青年的比分是 2 : 2 ,那么可以尝试将属于宅男的 2 个样本与我的总距离和属于文艺青年的 2 个样本与我的总距离进行比较。然后选择总距离最小的标签作为预测结果。在这个例子中预测结果为文艺青年(宅男的总距离为 4.2 + 9.5 ,文艺青年的总距离为 7.7 + 5.8 )。</p>
|
|
<h2 id="knn算法解决回归问题">kNN算法解决回归问题</h2>
|
|
<p>很明显,刚刚我们使用<strong>kNN算法</strong>解决了一个分类问题,那<strong>kNN算法</strong>能解决回归问题吗?当然可以!</p>
|
|
<p>在使用<code>kNN</code>算法解决回归问题时的思路和解决分类问题的思路基本一致,只不过预测标签值是多少的的时候是将距离最近的 k 个样本的标签值加起来再算个平均,而不是投票。例如离待预测样本最近的 5 个样本的标签如下:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>样本编号</th>
|
|
<th>4</th>
|
|
<th>9</th>
|
|
<th>11</th>
|
|
<th>13</th>
|
|
<th>15</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>标签</td>
|
|
<td>1.2</td>
|
|
<td>1.5</td>
|
|
<td>0.8</td>
|
|
<td>1.33</td>
|
|
<td>1.19</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>所以待预测样本的标签为:<code>(1.2+1.5+0.8+1.33+1.19)/5=1.204</code></p>
|
|
|
|
|
|
</section>
|
|
|
|
</div>
|
|
<div class="search-results">
|
|
<div class="has-results">
|
|
|
|
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
|
|
<ul class="search-results-list"></ul>
|
|
|
|
</div>
|
|
<div class="no-results">
|
|
|
|
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<a href="algorithm.html" class="navigation navigation-prev " aria-label="Previous page: 常见机器学习算法">
|
|
<i class="fa fa-angle-left"></i>
|
|
</a>
|
|
|
|
|
|
<a href="linear_regression.html" class="navigation navigation-next " aria-label="Next page: 最简单的回归算法-线性回归">
|
|
<i class="fa fa-angle-right"></i>
|
|
</a>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
<script>
|
|
var gitbook = gitbook || [];
|
|
gitbook.push(function() {
|
|
gitbook.page.hasChanged({"page":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"next":{"title":"最简单的回归算法-线性回归","level":"1.3.2","depth":2,"path":"linear_regression.md","ref":"linear_regression.md","articles":[]},"previous":{"title":"常见机器学习算法","level":"1.3","depth":1,"path":"algorithm.md","ref":"algorithm.md","articles":[{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},{"title":"最简单的回归算法-线性回归","level":"1.3.2","depth":2,"path":"linear_regression.md","ref":"linear_regression.md","articles":[]},{"title":"使用回归的思想进行分类-逻辑回归","level":"1.3.3","depth":2,"path":"logistic_regression.md","ref":"logistic_regression.md","articles":[]},{"title":"最接近人类思维的算法-决策树","level":"1.3.4","depth":2,"path":"decision_tree.md","ref":"decision_tree.md","articles":[]},{"title":"群众的力量是伟大的-随机森林","level":"1.3.5","depth":2,"path":"random_forest.md","ref":"random_forest.md","articles":[]},{"title":"物以类聚人以群分-kMeans","level":"1.3.6","depth":2,"path":"kMeans.md","ref":"kMeans.md","articles":[]},{"title":"以距离为尺-AGNES","level":"1.3.7","depth":2,"path":"AGNES.md","ref":"AGNES.md","articles":[]}]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["mathjax"],"pluginsConfig":{"mathjax":{"forceSVG":false,"version":"2.6-latest"},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"kNN.md","mtime":"2019-06-26T06:55:51.473Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-05T01:10:51.626Z"},"basePath":".","book":{"language":""}});
|
|
});
|
|
</script>
|
|
</div>
|
|
|
|
|
|
<script src="gitbook/gitbook.js"></script>
|
|
<script src="gitbook/theme.js"></script>
|
|
|
|
|
|
<script src="https://cdn.mathjax.org/mathjax/2.6-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-mathjax/plugin.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-search/search-engine.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-search/search.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-sharing/buttons.js"></script>
|
|
|
|
|
|
|
|
<script src="gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|
|
|