You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

558 lines
20 KiB

<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>近朱者赤近墨者黑-kNN · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="gitbook/style.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="gitbook/gitbook-plugin-fontsettings/website.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="linear_regression.html" />
<link rel="prev" href="algorithm.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="./">
<a href="./">
简介
</a>
</li>
<li class="chapter " data-level="1.2" data-path="machine_learning.html">
<a href="machine_learning.html">
机器学习概述
</a>
</li>
<li class="chapter " data-level="1.3" data-path="algorithm.html">
<a href="algorithm.html">
常见机器学习算法
</a>
<ul class="articles">
<li class="chapter active" data-level="1.3.1" data-path="kNN.html">
<a href="kNN.html">
近朱者赤近墨者黑-kNN
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="linear_regression.html">
<a href="linear_regression.html">
最简单的回归算法-线性回归
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="logistic_regression.html">
<a href="logistic_regression.html">
使用回归的思想进行分类-逻辑回归
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="decision_tree.html">
<a href="decision_tree.html">
最接近人类思维的算法-决策树
</a>
</li>
<li class="chapter " data-level="1.3.5" data-path="random_forest.html">
<a href="random_forest.html">
群众的力量是伟大的-随机森林
</a>
</li>
<li class="chapter " data-level="1.3.6" data-path="kMeans.html">
<a href="kMeans.html">
物以类聚人以群分-kMeans
</a>
</li>
<li class="chapter " data-level="1.3.7" data-path="AGNES.html">
<a href="AGNES.html">
以距离为尺-AGNES
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="metrics.html">
<a href="metrics.html">
模型评估指标
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="classification_metrics.html">
<a href="classification_metrics.html">
分类性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="regression_metrics.html">
<a href="regression_metrics.html">
回归性能评估指标
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="cluster_metrics.html">
<a href="cluster_metrics.html">
聚类性能评估指标
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="sklearn.html">
<a href="sklearn.html">
使用sklearn进行机器学习
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href="." >近朱者赤近墨者黑-kNN</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="&#x8FD1;&#x6731;&#x8005;&#x8D64;&#x8FD1;&#x58A8;&#x8005;&#x9ED1;-knn">&#x8FD1;&#x6731;&#x8005;&#x8D64;&#x8FD1;&#x58A8;&#x8005;&#x9ED1;-kNN</h1>
<p><strong>kNN&#x7B97;&#x6CD5;</strong>&#x5176;&#x5B9E;&#x662F;&#x4F17;&#x591A;&#x673A;&#x5668;&#x5B66;&#x4E60;&#x7B97;&#x6CD5;&#x4E2D;&#x6700;&#x7B80;&#x5355;&#x7684;&#x4E00;&#x79CD;&#xFF0C;&#x56E0;&#x4E3A;&#x8BE5;&#x7B97;&#x6CD5;&#x7684;&#x601D;&#x60F3;&#x5B8C;&#x5168;&#x53EF;&#x4EE5;&#x7528; 8 &#x4E2A;&#x5B57;&#x6765;&#x6982;&#x62EC;&#xFF1A;<strong>&#x201C;&#x8FD1;&#x6731;&#x8005;&#x8D64;&#xFF0C;&#x8FD1;&#x58A8;&#x8005;&#x9ED1;&#x201D;</strong>&#x3002;</p>
<h2 id="knn&#x7B97;&#x6CD5;&#x89E3;&#x51B3;&#x5206;&#x7C7B;&#x95EE;&#x9898;">kNN&#x7B97;&#x6CD5;&#x89E3;&#x51B3;&#x5206;&#x7C7B;&#x95EE;&#x9898;</h2>
<p>&#x5047;&#x8BBE;&#x73B0;&#x5728;&#x6709;&#x8FD9;&#x6837;&#x7684;&#x4E00;&#x4E2A;&#x6837;&#x672C;&#x7A7A;&#x95F4;(&#x7531;&#x6837;&#x672C;&#x7EC4;&#x6210;&#x7684;&#x4E00;&#x4E2A;&#x7A7A;&#x95F4;)&#xFF0C;&#x8BE5;&#x6837;&#x672C;&#x7A7A;&#x95F4;&#x91CC;&#x6709;&#x5B85;&#x7537;&#x548C;&#x6587;&#x827A;&#x9752;&#x5E74;&#x8FD9;&#x4E24;&#x4E2A;&#x7C7B;&#x522B;&#xFF0C;&#x5176;&#x4E2D;&#x7EA2;&#x5708;&#x8868;&#x793A;&#x5B85;&#x7537;&#xFF0C;&#x7EFF;&#x5708;&#x8868;&#x793A;&#x6587;&#x827A;&#x9752;&#x5E74;&#x3002;&#x5982;&#x4E0B;&#x56FE;&#x6240;&#x793A;&#xFF1A;</p>
<p><img src="img/8.jpg" alt=""></p>
<p>&#x5176;&#x5B9E;&#x6784;&#x5EFA;&#x51FA;&#x8FD9;&#x6837;&#x7684;&#x6837;&#x672C;&#x7A7A;&#x95F4;&#x7684;&#x8FC7;&#x7A0B;&#x5C31;&#x662F;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x7684;&#x8BAD;&#x7EC3;&#x8FC7;&#x7A0B;&#x3002;&#x53EF;&#x60F3;&#x800C;&#x77E5;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x662F;&#x6CA1;&#x6709;&#x8BAD;&#x7EC3;&#x8FC7;&#x7A0B;&#x7684;&#xFF0C;&#x6240;&#x4EE5;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x5C5E;&#x4E8E;&#x61D2;&#x60F0;&#x5B66;&#x4E60;&#x7B97;&#x6CD5;&#x3002;</p>
<p>&#x5047;&#x8BBE;&#x6211;&#x5728;&#x8FD9;&#x4E2A;&#x6837;&#x672C;&#x7A7A;&#x95F4;&#x4E2D;&#x7528;&#x9EC4;&#x5708;&#x8868;&#x793A;&#xFF0C;&#x5982;&#x4E0B;&#x56FE;&#x6240;&#x793A;&#xFF1A;</p>
<p><img src="img/9.jpg" alt=""></p>
<p>&#x73B0;&#x5728;&#x4F7F;&#x7528;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x6765;&#x9274;&#x522B;&#x4E00;&#x4E0B;&#x6211;&#x662F;&#x5B85;&#x7537;&#x8FD8;&#x662F;&#x6587;&#x827A;&#x9752;&#x5E74;&#x3002;&#x9996;&#x5148;&#x9700;&#x8981;&#x8BA1;&#x7B97;&#x6211;&#x4E0E;&#x6837;&#x672C;&#x7A7A;&#x95F4;&#x4E2D;&#x6240;&#x6709;&#x6837;&#x672C;&#x7684;&#x8DDD;&#x79BB;&#x3002;&#x5047;&#x8BBE;&#x8BA1;&#x7B97;&#x5F97;&#x5230;&#x7684;&#x8DDD;&#x79BB;&#x8868;&#x683C;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x6837;&#x672C;&#x7F16;&#x53F7;</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x6807;&#x7B7E;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x5B85;&#x7537;</td>
<td>...</td>
<td>&#x6587;&#x827A;&#x9752;&#x5E74;</td>
<td>&#x6587;&#x827A;&#x9752;&#x5E74;</td>
</tr>
<tr>
<td>&#x8DDD;&#x79BB;</td>
<td>11.2</td>
<td>9.5</td>
<td>...</td>
<td>23.3</td>
<td>37.6</td>
</tr>
</tbody>
</table>
<p>&#x7136;&#x540E;&#x627E;&#x51FA;&#x4E0E;&#x6211;&#x8DDD;&#x79BB;&#x6700;&#x5C0F;&#x7684; k &#x4E2A;&#x6837;&#x672C;( k &#x662F;&#x4E00;&#x4E2A;&#x8D85;&#x53C2;&#x6570;&#xFF0C;&#x9700;&#x8981;&#x81EA;&#x5DF1;&#x8BBE;&#x7F6E;&#xFF0C;&#x4E00;&#x822C;&#x9ED8;&#x8BA4;&#x4E3A; 5 )&#xFF0C;&#x5047;&#x8BBE;&#x4E0E;&#x6211;&#x79BB;&#x5F97;&#x6700;&#x8FD1;&#x7684; 5 &#x4E2A;&#x6837;&#x672C;&#x7684;&#x6807;&#x7B7E;&#x548C;&#x8DDD;&#x79BB;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x6837;&#x672C;&#x7F16;&#x53F7;</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x6807;&#x7B7E;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x6587;&#x827A;&#x9752;&#x5E74;</td>
</tr>
<tr>
<td>&#x8DDD;&#x79BB;</td>
<td>11.2</td>
<td>9.5</td>
<td>7.7</td>
<td>5.8</td>
<td>15.2</td>
</tr>
</tbody>
</table>
<p>&#x6700;&#x540E;&#x53EA;&#x9700;&#x8981;&#x5BF9;&#x8FD9; 5 &#x4E2A;&#x6837;&#x672C;&#x7684;&#x6807;&#x7B7E;&#x8FDB;&#x884C;&#x7EDF;&#x8BA1;&#xFF0C;&#x5E76;&#x5C06;&#x7968;&#x6570;&#x6700;&#x591A;&#x7684;&#x6807;&#x7B7E;&#x4F5C;&#x4E3A;&#x9884;&#x6D4B;&#x7ED3;&#x679C;&#x5373;&#x53EF;&#x3002;&#x5982;&#x4E0A;&#x8868;&#x4E2D;&#xFF0C;&#x5B85;&#x7537;&#x662F; 4 &#x7968;&#xFF0C;&#x6587;&#x827A;&#x9752;&#x5E74;&#x662F; 1 &#x7968;&#xFF0C;&#x6240;&#x4EE5;&#x6211;&#x662F;&#x5B85;&#x7537;&#x3002;</p>
<p><strong>&#x6CE8;&#x610F;</strong>&#xFF1A;&#x6709;&#x7684;&#x65F6;&#x5019;&#x53EF;&#x80FD;&#x4F1A;&#x6709;&#x7968;&#x6570;&#x4E00;&#x81F4;&#x7684;&#x60C5;&#x51B5;&#xFF0C;&#x6BD4;&#x5982; k = 4 &#x65F6;&#x4E0E;&#x6211;&#x79BB;&#x5F97;&#x6700;&#x8FD1;&#x7684;&#x6837;&#x672C;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x6837;&#x672C;&#x7F16;&#x53F7;</th>
<th>4</th>
<th>9</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x6807;&#x7B7E;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x5B85;&#x7537;</td>
<td>&#x6587;&#x827A;&#x9752;&#x5E74;</td>
<td>&#x6587;&#x827A;&#x9752;&#x5E74;</td>
</tr>
<tr>
<td>&#x8DDD;&#x79BB;</td>
<td>4.2</td>
<td>9.5</td>
<td>7.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>
<p>&#x53EF;&#x4EE5;&#x770B;&#x51FA;&#x5B85;&#x7537;&#x548C;&#x6587;&#x827A;&#x9752;&#x5E74;&#x7684;&#x6BD4;&#x5206;&#x662F; 2 : 2 &#xFF0C;&#x90A3;&#x4E48;&#x53EF;&#x4EE5;&#x5C1D;&#x8BD5;&#x5C06;&#x5C5E;&#x4E8E;&#x5B85;&#x7537;&#x7684; 2 &#x4E2A;&#x6837;&#x672C;&#x4E0E;&#x6211;&#x7684;&#x603B;&#x8DDD;&#x79BB;&#x548C;&#x5C5E;&#x4E8E;&#x6587;&#x827A;&#x9752;&#x5E74;&#x7684; 2 &#x4E2A;&#x6837;&#x672C;&#x4E0E;&#x6211;&#x7684;&#x603B;&#x8DDD;&#x79BB;&#x8FDB;&#x884C;&#x6BD4;&#x8F83;&#x3002;&#x7136;&#x540E;&#x9009;&#x62E9;&#x603B;&#x8DDD;&#x79BB;&#x6700;&#x5C0F;&#x7684;&#x6807;&#x7B7E;&#x4F5C;&#x4E3A;&#x9884;&#x6D4B;&#x7ED3;&#x679C;&#x3002;&#x5728;&#x8FD9;&#x4E2A;&#x4F8B;&#x5B50;&#x4E2D;&#x9884;&#x6D4B;&#x7ED3;&#x679C;&#x4E3A;&#x6587;&#x827A;&#x9752;&#x5E74;(&#x5B85;&#x7537;&#x7684;&#x603B;&#x8DDD;&#x79BB;&#x4E3A; 4.2 + 9.5 &#xFF0C;&#x6587;&#x827A;&#x9752;&#x5E74;&#x7684;&#x603B;&#x8DDD;&#x79BB;&#x4E3A; 7.7 + 5.8 )&#x3002;</p>
<h2 id="knn&#x7B97;&#x6CD5;&#x89E3;&#x51B3;&#x56DE;&#x5F52;&#x95EE;&#x9898;">kNN&#x7B97;&#x6CD5;&#x89E3;&#x51B3;&#x56DE;&#x5F52;&#x95EE;&#x9898;</h2>
<p>&#x5F88;&#x660E;&#x663E;&#xFF0C;&#x521A;&#x521A;&#x6211;&#x4EEC;&#x4F7F;&#x7528;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x89E3;&#x51B3;&#x4E86;&#x4E00;&#x4E2A;&#x5206;&#x7C7B;&#x95EE;&#x9898;&#xFF0C;&#x90A3;<strong>kNN&#x7B97;&#x6CD5;</strong>&#x80FD;&#x89E3;&#x51B3;&#x56DE;&#x5F52;&#x95EE;&#x9898;&#x5417;&#xFF1F;&#x5F53;&#x7136;&#x53EF;&#x4EE5;&#xFF01;</p>
<p>&#x5728;&#x4F7F;&#x7528;<code>kNN</code>&#x7B97;&#x6CD5;&#x89E3;&#x51B3;&#x56DE;&#x5F52;&#x95EE;&#x9898;&#x65F6;&#x7684;&#x601D;&#x8DEF;&#x548C;&#x89E3;&#x51B3;&#x5206;&#x7C7B;&#x95EE;&#x9898;&#x7684;&#x601D;&#x8DEF;&#x57FA;&#x672C;&#x4E00;&#x81F4;&#xFF0C;&#x53EA;&#x4E0D;&#x8FC7;&#x9884;&#x6D4B;&#x6807;&#x7B7E;&#x503C;&#x662F;&#x591A;&#x5C11;&#x7684;&#x7684;&#x65F6;&#x5019;&#x662F;&#x5C06;&#x8DDD;&#x79BB;&#x6700;&#x8FD1;&#x7684; k &#x4E2A;&#x6837;&#x672C;&#x7684;&#x6807;&#x7B7E;&#x503C;&#x52A0;&#x8D77;&#x6765;&#x518D;&#x7B97;&#x4E2A;&#x5E73;&#x5747;&#xFF0C;&#x800C;&#x4E0D;&#x662F;&#x6295;&#x7968;&#x3002;&#x4F8B;&#x5982;&#x79BB;&#x5F85;&#x9884;&#x6D4B;&#x6837;&#x672C;&#x6700;&#x8FD1;&#x7684; 5 &#x4E2A;&#x6837;&#x672C;&#x7684;&#x6807;&#x7B7E;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x6837;&#x672C;&#x7F16;&#x53F7;</th>
<th>4</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x6807;&#x7B7E;</td>
<td>1.2</td>
<td>1.5</td>
<td>0.8</td>
<td>1.33</td>
<td>1.19</td>
</tr>
</tbody>
</table>
<p>&#x6240;&#x4EE5;&#x5F85;&#x9884;&#x6D4B;&#x6837;&#x672C;&#x7684;&#x6807;&#x7B7E;&#x4E3A;&#xFF1A;<code>(1.2+1.5+0.8+1.33+1.19)/5=1.204</code></p>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="algorithm.html" class="navigation navigation-prev " aria-label="Previous page: 常见机器学习算法">
<i class="fa fa-angle-left"></i>
</a>
<a href="linear_regression.html" class="navigation navigation-next " aria-label="Next page: 最简单的回归算法-线性回归">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"next":{"title":"最简单的回归算法-线性回归","level":"1.3.2","depth":2,"path":"linear_regression.md","ref":"linear_regression.md","articles":[]},"previous":{"title":"常见机器学习算法","level":"1.3","depth":1,"path":"algorithm.md","ref":"algorithm.md","articles":[{"title":"近朱者赤近墨者黑-kNN","level":"1.3.1","depth":2,"path":"kNN.md","ref":"kNN.md","articles":[]},{"title":"最简单的回归算法-线性回归","level":"1.3.2","depth":2,"path":"linear_regression.md","ref":"linear_regression.md","articles":[]},{"title":"使用回归的思想进行分类-逻辑回归","level":"1.3.3","depth":2,"path":"logistic_regression.md","ref":"logistic_regression.md","articles":[]},{"title":"最接近人类思维的算法-决策树","level":"1.3.4","depth":2,"path":"decision_tree.md","ref":"decision_tree.md","articles":[]},{"title":"群众的力量是伟大的-随机森林","level":"1.3.5","depth":2,"path":"random_forest.md","ref":"random_forest.md","articles":[]},{"title":"物以类聚人以群分-kMeans","level":"1.3.6","depth":2,"path":"kMeans.md","ref":"kMeans.md","articles":[]},{"title":"以距离为尺-AGNES","level":"1.3.7","depth":2,"path":"AGNES.md","ref":"AGNES.md","articles":[]}]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["mathjax"],"pluginsConfig":{"mathjax":{"forceSVG":false,"version":"2.6-latest"},"highlight":{},"search":{},"lunr":{"maxIndexSize":1000000,"ignoreSpecialCharacters":false},"sharing":{"facebook":true,"twitter":true,"google":false,"weibo":false,"instapaper":false,"vk":false,"all":["facebook","google","twitter","weibo","instapaper"]},"fontsettings":{"theme":"white","family":"sans","size":2},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"kNN.md","mtime":"2019-06-26T06:55:51.473Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-05T01:10:51.626Z"},"basePath":".","book":{"language":""}});
});
</script>
</div>
<script src="gitbook/gitbook.js"></script>
<script src="gitbook/theme.js"></script>
<script src="https://cdn.mathjax.org/mathjax/2.6-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script src="gitbook/gitbook-plugin-mathjax/plugin.js"></script>
<script src="gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="gitbook/gitbook-plugin-search/search.js"></script>
<script src="gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
</body>
</html>