You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pt5jvslni/_book/Chapter10/基于矩阵分解的协同过滤算法思想.html

1292 lines
37 KiB

6 years ago
<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>10.2:基于矩阵分解的协同过滤算法思想 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="基于矩阵分解的协同过滤算法原理.html" />
<link rel="prev" href="推荐系统概述.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
前言
</a>
</li>
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
<a href="../Chapter1/">
第一章 绪论
</a>
<ul class="articles">
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
<a href="../Chapter1/为什么要数据挖掘.html">
1.1:为什么要数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
<a href="../Chapter1/什么是数据挖掘.html">
1.2: 什么是数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
<a href="../Chapter1/数据挖掘主要任务.html">
1.3:数据挖掘主要任务
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
<a href="../Chapter2/">
第二章 数据探索
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
<a href="../Chapter2/数据与属性.html">
2.1:数据与属性
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
<a href="../Chapter2/数据的基本统计指标.html">
2.2:数据的基本统计指标
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
<a href="../Chapter2/数据可视化.html">
2.3:数据可视化
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
<a href="../Chapter2/相似性度量.html">
2.4:相似性度量
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
<a href="../Chapter3/">
第三章 数据预处理
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
<a href="../Chapter3/为什么要数据预处理.html">
3.1:为什么要数据预处理
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
<a href="../Chapter3/标准化.html">
3.2:标准化
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
<a href="../Chapter3/非线性变换.html">
3.3:非线性变换
</a>
</li>
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
<a href="../Chapter3/归一化.html">
3.4:归一化
</a>
</li>
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
<a href="../Chapter3/离散值编码.html">
3.5:离散值编码
</a>
</li>
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
<a href="../Chapter3/生成多项式特征.html">
3.6:生成多项式特征
</a>
</li>
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
<a href="../Chapter3/估算缺失值.html">
3.7:估算缺失值
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
<a href="../Chapter4/">
第四章 k-近邻
</a>
<ul class="articles">
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
<a href="../Chapter4/k-近邻算法思想.html">
4.1:k-近邻算法思想
</a>
</li>
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
<a href="../Chapter4/k-近邻算法原理.html">
4.2:k-近邻算法原理
</a>
</li>
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
<a href="../Chapter4/k-近邻算法流程.html">
4.3:k-近邻算法流程
</a>
</li>
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
<a href="../Chapter4/动手实现k-近邻.html">
4.4:动手实现k-近邻
</a>
</li>
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
<a href="../Chapter4/实战案例.html">
4.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
<a href="../Chapter5/">
第五章 线性回归
</a>
<ul class="articles">
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
<a href="../Chapter5/线性回归算法思想.html">
5.1:线性回归算法思想
</a>
</li>
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
<a href="../Chapter5/线性回归算法原理.html">
5.2:线性回归算法原理
</a>
</li>
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
<a href="../Chapter5/线性回归算法流程.html">
5.3:线性回归算法流程
</a>
</li>
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
<a href="../Chapter5/动手实现线性回归.html">
5.4:动手实现线性回归
</a>
</li>
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
<a href="../Chapter5/实战案例.html">
5.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="../Chapter6/">
<a href="../Chapter6/">
第六章 决策树
</a>
<ul class="articles">
<li class="chapter " data-level="1.7.1" data-path="../Chapter6/决策树算法思想.html">
<a href="../Chapter6/决策树算法思想.html">
6.1:决策树算法思想
</a>
</li>
<li class="chapter " data-level="1.7.2" data-path="../Chapter6/决策树算法原理.html">
<a href="../Chapter6/决策树算法原理.html">
6.2:决策树算法原理
</a>
</li>
<li class="chapter " data-level="1.7.3" data-path="../Chapter6/决策树算法流程.html">
<a href="../Chapter6/决策树算法流程.html">
6.3:决策树算法流程
</a>
</li>
<li class="chapter " data-level="1.7.4" data-path="../Chapter6/动手实现决策树.html">
<a href="../Chapter6/动手实现决策树.html">
6.4:动手实现决策树
</a>
</li>
<li class="chapter " data-level="1.7.5" data-path="../Chapter6/实战案例.html">
<a href="../Chapter6/实战案例.html">
6.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.8" data-path="../Chapter7/">
<a href="../Chapter7/">
第七章 k-均值
</a>
<ul class="articles">
<li class="chapter " data-level="1.8.1" data-path="../Chapter7/k-均值算法思想.html">
<a href="../Chapter7/k-均值算法思想.html">
7.1:k-均值算法思想
</a>
</li>
<li class="chapter " data-level="1.8.2" data-path="../Chapter7/k-均值算法原理.html">
<a href="../Chapter7/k-均值算法原理.html">
7.2:k-均值算法原理
</a>
</li>
<li class="chapter " data-level="1.8.3" data-path="../Chapter7/k-均值算法流程.html">
<a href="../Chapter7/k-均值算法流程.html">
7.3:k-均值算法流程
</a>
</li>
<li class="chapter " data-level="1.8.4" data-path="../Chapter7/动手实现k-均值.html">
<a href="../Chapter7/动手实现k-均值.html">
7.4:动手实现k-均值
</a>
</li>
<li class="chapter " data-level="1.8.5" data-path="../Chapter7/实战案例.html">
<a href="../Chapter7/实战案例.html">
7.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
<a href="../Chapter8/">
第八章 Apriori
</a>
<ul class="articles">
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
<a href="../Chapter8/Apriori算法思想.html">
8.1:Apriori算法思想
</a>
</li>
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
<a href="../Chapter8/Apriori算法原理.html">
8.2:Apriori算法原理
</a>
</li>
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
<a href="../Chapter8/Apriori算法流程.html">
8.3:Apriori算法流程
</a>
</li>
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
<a href="../Chapter8/动手实现Apriori.html">
8.4:动手实现Apriori
</a>
</li>
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
<a href="../Chapter8/实战案例.html">
8.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
<a href="../Chapter9/">
第九章 PageRank
</a>
<ul class="articles">
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
<a href="../Chapter9/PageRank算法思想.html">
9.1:PageRank算法思想
</a>
</li>
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
<a href="../Chapter9/PageRank算法原理.html">
9.2:PageRank算法原理
</a>
</li>
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
<a href="../Chapter9/PageRank算法流程.html">
9.3:PageRank算法流程
</a>
</li>
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
<a href="../Chapter9/动手实现PageRank.html">
9.4:动手实现PageRank
</a>
</li>
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
<a href="../Chapter9/实战案例.html">
9.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.11" data-path="./">
<a href="./">
第十章 推荐系统
</a>
<ul class="articles">
<li class="chapter " data-level="1.11.1" data-path="推荐系统概述.html">
<a href="推荐系统概述.html">
10.1:推荐系统概述
</a>
</li>
<li class="chapter active" data-level="1.11.2" data-path="基于矩阵分解的协同过滤算法思想.html">
<a href="基于矩阵分解的协同过滤算法思想.html">
10.2:基于矩阵分解的协同过滤算法思想
</a>
</li>
<li class="chapter " data-level="1.11.3" data-path="基于矩阵分解的协同过滤算法原理.html">
<a href="基于矩阵分解的协同过滤算法原理.html">
10.3:基于矩阵分解的协同过滤算法原理
</a>
</li>
<li class="chapter " data-level="1.11.4" data-path="基于矩阵分解的协同过滤算法流程.html">
<a href="基于矩阵分解的协同过滤算法流程.html">
10.4:基于矩阵分解的协同过滤算法流程
</a>
</li>
<li class="chapter " data-level="1.11.5" data-path="动手实现基于矩阵分解的协同过滤.html">
<a href="动手实现基于矩阵分解的协同过滤.html">
10.5:动手实现基于矩阵分解的协同过滤
</a>
</li>
<li class="chapter " data-level="1.11.6" data-path="实战案例.html">
<a href="实战案例.html">
10.6:实战案例
</a>
</li>
</ul>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >10.2:基于矩阵分解的协同过滤算法思想</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="102&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#x601D;&#x60F3;">10.2:&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#x601D;&#x60F3;</h1>
<p>&#x5728;&#x63A8;&#x8350;&#x7CFB;&#x7EDF;&#x4E2D;&#xFF0C;&#x6211;&#x4EEC;&#x7ECF;&#x5E38;&#x770B;&#x5230;&#x5982;&#x4E0B;&#x56FE;&#x7684;&#x8868;&#x683C;&#xFF0C;&#x8868;&#x683C;&#x4E2D;&#x7684;&#x6570;&#x5B57;&#x4EE3;&#x8868;&#x7528;&#x6237;&#x5BF9;&#x67D0;&#x4E2A;&#x7269;&#x54C1;&#x7684;&#x8BC4;&#x5206;&#xFF0C;<code>0</code>&#x4EE3;&#x8868;&#x672A;&#x8BC4;&#x5206;&#x3002;&#x6211;&#x4EEC;&#x5E0C;&#x671B;&#x80FD;&#x591F;&#x9884;&#x6D4B;&#x76EE;&#x6807;&#x7528;&#x6237;&#x5BF9;&#x7269;&#x54C1;&#x7684;&#x8BC4;&#x5206;&#xFF0C;&#x8FDB;&#x800C;&#x6839;&#x636E;&#x8BC4;&#x5206;&#x9AD8;&#x4F4E;&#xFF0C;&#x5C06;&#x5206;&#x9AD8;&#x7684;&#x7269;&#x54C1;&#x63A8;&#x8350;&#x7ED9;&#x7528;&#x6237;&#x3002;</p>
<table>
<thead>
<tr>
<th>y</th>
<th>&#x7269;&#x54C1;1</th>
<th>&#x7269;&#x54C1;2</th>
<th>&#x7269;&#x54C1;3</th>
<th>&#x7269;&#x54C1;4</th>
<th>&#x7269;&#x54C1;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x7528;&#x6237;1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&#x7528;&#x6237;2</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&#x7528;&#x6237;3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>&#x7528;&#x6237;4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
<p>&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#x6B63;&#x597D;&#x80FD;&#x89E3;&#x51B3;&#x8FD9;&#x4E2A;&#x95EE;&#x9898;&#x3002;</p>
<p>&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#x901A;&#x5E38;&#x90FD;&#x4F1A;&#x6784;&#x9020;&#x5982;&#x4E0B;&#x56FE;&#x6240;&#x793A;&#x8BC4;&#x5206;&#x8868;<code>y</code>&#xFF0C;&#x8FD9;&#x91CC;&#x6211;&#x4EEC;&#x4EE5;&#x7535;&#x5F71;&#x4E3A;&#x4F8B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>y</th>
<th>&#x7535;&#x5F71;1</th>
<th>&#x7535;&#x5F71;2</th>
<th>&#x7535;&#x5F71;3</th>
<th>&#x7535;&#x5F71;4</th>
<th>&#x7535;&#x5F71;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x7528;&#x6237;1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&#x7528;&#x6237;2</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&#x7528;&#x6237;3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>&#x7528;&#x6237;4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
<p>&#x6211;&#x4EEC;&#x8BA4;&#x4E3A;&#xFF0C;&#x6709;&#x5F88;&#x591A;&#x56E0;&#x7D20;&#x4F1A;&#x5F71;&#x54CD;&#x5230;&#x7528;&#x6237;&#x7ED9;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#xFF0C;&#x5982;&#x7535;&#x5F71;&#x5185;&#x5BB9;&#xFF1A;&#x611F;&#x60C5;&#x620F;&#xFF0C;&#x6050;&#x6016;&#x5143;&#x7D20;&#xFF0C;&#x52A8;&#x4F5C;&#x6210;&#x5206;&#xFF0C;&#x63A8;&#x7406;&#x60AC;&#x7591;&#x7B49;&#x7B49;&#x3002;&#x5047;&#x8BBE;&#x6211;&#x4EEC;&#x73B0;&#x5728;&#x60F3;&#x9884;&#x6D4B;&#x7528;&#x6237;<code>2</code>&#x5BF9;&#x7535;&#x5F71;<code>2</code>&#x7684;&#x8BC4;&#x5206;&#xFF0C;&#x7528;&#x6237;<code>2</code>&#x4ED6;&#x5F88;&#x559C;&#x6B22;&#x770B;&#x52A8;&#x4F5C;&#x7247;&#x4E0E;&#x63A8;&#x7406;&#x60AC;&#x7591;&#xFF0C;&#x4E0D;&#x559C;&#x6B22;&#x770B;&#x611F;&#x60C5;&#x620F;&#x4E0E;&#x6050;&#x6016;&#x7684;&#x5143;&#x7D20;&#xFF0C;&#x800C;&#x7535;&#x5F71;2&#x53EA;&#x6709;&#x5C11;&#x91CF;&#x7684;&#x611F;&#x60C5;&#x620F;&#x4E0E;&#x6050;&#x6016;&#x5143;&#x7D20;&#xFF0C;&#x5927;&#x90E8;&#x5206;&#x90FD;&#x662F;&#x52A8;&#x4F5C;&#x4E0E;&#x63A8;&#x7406;&#x7684;&#x5267;&#x60C5;&#xFF0C;&#x5219;&#x7528;&#x6237;<code>2</code>&#x5BF9;&#x7535;&#x5F71;<code>2</code>&#x8BC4;&#x5206;&#x53EF;&#x80FD;&#x5F88;&#x9AD8;&#xFF0C;&#x6BD4;&#x5982;<code>5</code>&#x5206;&#x3002;</p>
<p>&#x57FA;&#x4E8E;&#x4E0A;&#x9762;&#x7684;&#x8BBE;&#x60F3;&#xFF0C;&#x6211;&#x4EEC;&#x53EA;&#x8981;&#x77E5;&#x9053;&#x6240;&#x6709;&#x7528;&#x6237;&#x5BF9;&#x7535;&#x5F71;&#x5185;&#x5BB9;&#x5404;&#x79CD;&#x5143;&#x7D20;&#x559C;&#x6B22;&#x7A0B;&#x5EA6;&#x4E0E;&#x6240;&#x6709;&#x7535;&#x5F71;&#x5185;&#x5BB9;&#x7684;&#x6210;&#x5206;&#xFF0C;&#x5C31;&#x80FD;&#x9884;&#x6D4B;&#x51FA;&#x6240;&#x6709;&#x7528;&#x6237;&#x5BF9;&#x6240;&#x6709;&#x7535;&#x5F71;&#x7684;&#x8BC4;&#x5206;&#x4E86;&#x3002;
&#x82E5;&#x53EA;&#x8003;&#x8651;&#x4E24;&#x79CD;&#x5143;&#x7D20;&#x5219;&#x7528;&#x6237;&#x559C;&#x597D;&#x8868;&#x4E0E;&#x7535;&#x5F71;&#x5185;&#x5BB9;&#x8868;&#x5982;&#x4E0B;&#xFF1A;</p>
<p>&#x7528;&#x6237;&#x559C;&#x597D;&#x8868;<code>x</code>&#xFF1A;</p>
<table>
<thead>
<tr>
<th>x</th>
<th>&#x56E0;&#x7D20;1</th>
<th>&#x56E0;&#x7D20;2</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x7528;&#x6237;1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>&#x7528;&#x6237;2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>&#x7528;&#x6237;3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>&#x7528;&#x6237;4</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
<p>&#x503C;&#x8D8A;&#x5927;&#x4EE3;&#x8868;&#x7528;&#x6237;&#x8D8A;&#x559C;&#x6B22;&#x67D0;&#x79CD;&#x5143;&#x7D20;&#x3002;</p>
<p>&#x7535;&#x5F71;&#x5185;&#x5BB9;&#x8868;&#xFF1A;<code>w</code>:</p>
<table>
<thead>
<tr>
<th>w</th>
<th>&#x7535;&#x5F71;1</th>
<th>&#x7535;&#x5F71;2</th>
<th>&#x7535;&#x5F71;3</th>
<th>&#x7535;&#x5F71;4</th>
<th>&#x7535;&#x5F71;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x56E0;&#x7D20;1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.99</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>&#x56E0;&#x7D20;2</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>1.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>
<p>&#x503C;&#x8D8A;&#x5927;&#x4EE3;&#x8868;&#x7535;&#x5F71;&#x4E2D;&#x67D0;&#x5143;&#x7D20;&#x5185;&#x5BB9;&#x8D8A;&#x591A;&#x3002;</p>
<p>&#x7528;&#x6237;<code>2</code>&#x5BF9;&#x7535;&#x5F71;<code>2</code>&#x8BC4;&#x5206;&#x4E3A;&#xFF1A;<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>5</mn><mo>&#xD7;</mo><mn>1</mn><mi mathvariant="normal">.</mi><mn>0</mn><mo>+</mo><mn>0</mn><mo>&#xD7;</mo><mn>0</mn><mi mathvariant="normal">.</mi><mn>0</mn><mn>1</mn><mo>=</mo><mn>5</mn><mi mathvariant="normal">.</mi><mn>0</mn></mrow><annotation encoding="application/x-tex">5\times 1.0 +0\times 0.01 = 5.0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.64444em;"></span><span class="strut bottom" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="base textstyle uncramped"><span class="mord mathrm">5</span><span class="mbin">&#xD7;</span><span class="mord mathrm">1</span><span class="mord mathrm">.</span><span class="mord mathrm">0</span><span class="mbin">+</span><span class="mord mathrm">0</span><span class="mbin">&#xD7;</span><span class="mord mathrm">0</span><span class="mord mathrm">.</span><span class="mord mathrm">0</span><span class="mord mathrm">1</span><span class="mrel">=</span><span class="mord mathrm">5</span><span class="mord mathrm">.</span><span class="mord mathrm">0</span></span></span></span></p>
<p>&#x5BF9;&#x4E8E;&#x6240;&#x6709;&#x7528;&#x6237;&#xFF0C;&#x6211;&#x4EEC;&#x53EF;&#x4EE5;&#x5C06;&#x77E9;&#x9635;<code>x</code>&#x4E0E;&#x77E9;&#x9635;<code>w</code>&#x76F8;&#x4E58;&#xFF0C;&#x5F97;&#x5230;&#x6240;&#x6709;&#x7528;&#x6237;&#x5BF9;&#x6240;&#x6709;&#x7535;&#x5F71;&#x7684;&#x9884;&#x6D4B;&#x8BC4;&#x5206;&#x5982;&#x4E0B;&#x8868;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>xw</th>
<th>&#x7535;&#x5F71;1</th>
<th>&#x7535;&#x5F71;2</th>
<th>&#x7535;&#x5F71;3</th>
<th>&#x7535;&#x5F71;4</th>
<th>&#x7535;&#x5F71;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&#x7528;&#x6237;1</td>
<td>4.5</td>
<td>5.0</td>
<td>4.95</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>&#x7528;&#x6237;2</td>
<td>4.5</td>
<td>5.0</td>
<td>4.95</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>&#x7528;&#x6237;3</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>&#x7528;&#x6237;4</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>5</td>
<td>4.5</td>
</tr>
</tbody>
</table>
<p>&#x5047;&#x8BBE;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x8868;<code>y</code>&#xFF08;&#x4E3A;<code>m</code>&#x884C;<code>n</code>&#x5217;&#x7684;&#x77E9;&#x9635;&#xFF09;,&#x6211;&#x4EEC;&#x8003;&#x8651;<code>d</code>&#x79CD;&#x5143;&#x7D20;&#xFF0C;&#x5219;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x8868;&#x53EF;&#x4EE5;&#x5206;&#x89E3;&#x4E3A;&#x7528;&#x6237;&#x559C;&#x597D;&#x8868;<code>x</code>&#xFF08;&#x4E3A;<code>m</code>&#x884C;<code>d</code>&#x5217;&#x7684;&#x77E9;&#x9635;&#xFF09;&#xFF0C;&#x4E0E;&#x7535;&#x5F71;&#x5185;&#x5BB9;&#x8868;<code>w</code>&#xFF08;&#x4E3A;<code>d</code>&#x884C;<code>n</code>&#x5217;&#x7684;&#x77E9;&#x9635;&#xFF09;&#x3002;&#x5176;&#x4E2D;<code>d</code>&#x4E3A;&#x8D85;&#x53C2;&#x6570;&#xFF0C;&#x5927;&#x5C0F;&#x7531;&#x6211;&#x4EEC;&#x81EA;&#x5DF1;&#x5B9A;&#x3002;</p>
<p>&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#x601D;&#x60F3;&#x4E3A;&#xFF1A;<strong>&#x4E00;&#x4E2A;&#x7528;&#x6237;&#x8BC4;&#x5206;&#x77E9;&#x9635;&#x53EF;&#x4EE5;&#x5206;&#x89E3;&#x4E3A;&#x4E00;&#x4E2A;&#x7528;&#x6237;&#x559C;&#x597D;&#x77E9;&#x9635;&#x4E0E;&#x5185;&#x5BB9;&#x77E9;&#x9635;&#xFF0C;&#x6211;&#x4EEC;&#x53EA;&#x8981;&#x80FD;&#x627E;&#x51FA;&#x6B63;&#x786E;&#x7684;&#x7528;&#x6237;&#x559C;&#x597D;&#x77E9;&#x9635;&#x53C2;&#x6570;&#x4E0E;&#x5185;&#x5BB9;&#x77E9;&#x9635;&#x53C2;&#x6570;&#xFF08;&#x5373;&#x8868;&#x5185;&#x7684;&#x503C;&#xFF09;&#xFF0C;&#x5C31;&#x80FD;&#x5BF9;&#x7528;&#x6237;&#x8BC4;&#x5206;&#x8FDB;&#x884C;&#x9884;&#x6D4B;&#xFF0C;&#x518D;&#x6839;&#x636E;&#x9884;&#x6D4B;&#x7ED3;&#x679C;&#x5BF9;&#x7528;&#x6237;&#x8FDB;&#x884C;&#x63A8;&#x8350;&#x3002;</strong></p>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="推荐系统概述.html" class="navigation navigation-prev " aria-label="Previous page: 10.1:推荐系统概述">
<i class="fa fa-angle-left"></i>
</a>
<a href="基于矩阵分解的协同过滤算法原理.html" class="navigation navigation-next " aria-label="Next page: 10.3:基于矩阵分解的协同过滤算法原理">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"10.2:基于矩阵分解的协同过滤算法思想","level":"1.11.2","depth":2,"next":{"title":"10.3:基于矩阵分解的协同过滤算法原理","level":"1.11.3","depth":2,"path":"Chapter10/基于矩阵分解的协同过滤算法原理.md","ref":"Chapter10/基于矩阵分解的协同过滤算法原理.md","articles":[]},"previous":{"title":"10.1:推荐系统概述","level":"1.11.1","depth":2,"path":"Chapter10/推荐系统概述.md","ref":"Chapter10/推荐系统概述.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter10/基于矩阵分解的协同过滤算法思想.md","mtime":"2019-07-04T06:28:43.013Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
</body>
</html>