You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1195 lines
32 KiB

<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>10.6:实战案例 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="prev" href="动手实现基于矩阵分解的协同过滤.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
前言
</a>
</li>
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
<a href="../Chapter1/">
第一章 绪论
</a>
<ul class="articles">
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
<a href="../Chapter1/为什么要数据挖掘.html">
1.1:为什么要数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
<a href="../Chapter1/什么是数据挖掘.html">
1.2: 什么是数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
<a href="../Chapter1/数据挖掘主要任务.html">
1.3:数据挖掘主要任务
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
<a href="../Chapter2/">
第二章 数据探索
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
<a href="../Chapter2/数据与属性.html">
2.1:数据与属性
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
<a href="../Chapter2/数据的基本统计指标.html">
2.2:数据的基本统计指标
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
<a href="../Chapter2/数据可视化.html">
2.3:数据可视化
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
<a href="../Chapter2/相似性度量.html">
2.4:相似性度量
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
<a href="../Chapter3/">
第三章 数据预处理
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
<a href="../Chapter3/为什么要数据预处理.html">
3.1:为什么要数据预处理
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
<a href="../Chapter3/标准化.html">
3.2:标准化
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
<a href="../Chapter3/非线性变换.html">
3.3:非线性变换
</a>
</li>
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
<a href="../Chapter3/归一化.html">
3.4:归一化
</a>
</li>
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
<a href="../Chapter3/离散值编码.html">
3.5:离散值编码
</a>
</li>
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
<a href="../Chapter3/生成多项式特征.html">
3.6:生成多项式特征
</a>
</li>
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
<a href="../Chapter3/估算缺失值.html">
3.7:估算缺失值
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
<a href="../Chapter4/">
第四章 k-近邻
</a>
<ul class="articles">
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
<a href="../Chapter4/k-近邻算法思想.html">
4.1:k-近邻算法思想
</a>
</li>
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
<a href="../Chapter4/k-近邻算法原理.html">
4.2:k-近邻算法原理
</a>
</li>
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
<a href="../Chapter4/k-近邻算法流程.html">
4.3:k-近邻算法流程
</a>
</li>
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
<a href="../Chapter4/动手实现k-近邻.html">
4.4:动手实现k-近邻
</a>
</li>
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
<a href="../Chapter4/实战案例.html">
4.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
<a href="../Chapter5/">
第五章 线性回归
</a>
<ul class="articles">
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
<a href="../Chapter5/线性回归算法思想.html">
5.1:线性回归算法思想
</a>
</li>
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
<a href="../Chapter5/线性回归算法原理.html">
5.2:线性回归算法原理
</a>
</li>
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
<a href="../Chapter5/线性回归算法流程.html">
5.3:线性回归算法流程
</a>
</li>
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
<a href="../Chapter5/动手实现线性回归.html">
5.4:动手实现线性回归
</a>
</li>
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
<a href="../Chapter5/实战案例.html">
5.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="../Chapter6/">
<a href="../Chapter6/">
第六章 决策树
</a>
<ul class="articles">
<li class="chapter " data-level="1.7.1" data-path="../Chapter6/决策树算法思想.html">
<a href="../Chapter6/决策树算法思想.html">
6.1:决策树算法思想
</a>
</li>
<li class="chapter " data-level="1.7.2" data-path="../Chapter6/决策树算法原理.html">
<a href="../Chapter6/决策树算法原理.html">
6.2:决策树算法原理
</a>
</li>
<li class="chapter " data-level="1.7.3" data-path="../Chapter6/决策树算法流程.html">
<a href="../Chapter6/决策树算法流程.html">
6.3:决策树算法流程
</a>
</li>
<li class="chapter " data-level="1.7.4" data-path="../Chapter6/动手实现决策树.html">
<a href="../Chapter6/动手实现决策树.html">
6.4:动手实现决策树
</a>
</li>
<li class="chapter " data-level="1.7.5" data-path="../Chapter6/实战案例.html">
<a href="../Chapter6/实战案例.html">
6.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.8" data-path="../Chapter7/">
<a href="../Chapter7/">
第七章 k-均值
</a>
<ul class="articles">
<li class="chapter " data-level="1.8.1" data-path="../Chapter7/k-均值算法思想.html">
<a href="../Chapter7/k-均值算法思想.html">
7.1:k-均值算法思想
</a>
</li>
<li class="chapter " data-level="1.8.2" data-path="../Chapter7/k-均值算法原理.html">
<a href="../Chapter7/k-均值算法原理.html">
7.2:k-均值算法原理
</a>
</li>
<li class="chapter " data-level="1.8.3" data-path="../Chapter7/k-均值算法流程.html">
<a href="../Chapter7/k-均值算法流程.html">
7.3:k-均值算法流程
</a>
</li>
<li class="chapter " data-level="1.8.4" data-path="../Chapter7/动手实现k-均值.html">
<a href="../Chapter7/动手实现k-均值.html">
7.4:动手实现k-均值
</a>
</li>
<li class="chapter " data-level="1.8.5" data-path="../Chapter7/实战案例.html">
<a href="../Chapter7/实战案例.html">
7.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
<a href="../Chapter8/">
第八章 Apriori
</a>
<ul class="articles">
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
<a href="../Chapter8/Apriori算法思想.html">
8.1:Apriori算法思想
</a>
</li>
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
<a href="../Chapter8/Apriori算法原理.html">
8.2:Apriori算法原理
</a>
</li>
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
<a href="../Chapter8/Apriori算法流程.html">
8.3:Apriori算法流程
</a>
</li>
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
<a href="../Chapter8/动手实现Apriori.html">
8.4:动手实现Apriori
</a>
</li>
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
<a href="../Chapter8/实战案例.html">
8.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
<a href="../Chapter9/">
第九章 PageRank
</a>
<ul class="articles">
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
<a href="../Chapter9/PageRank算法思想.html">
9.1:PageRank算法思想
</a>
</li>
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
<a href="../Chapter9/PageRank算法原理.html">
9.2:PageRank算法原理
</a>
</li>
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
<a href="../Chapter9/PageRank算法流程.html">
9.3:PageRank算法流程
</a>
</li>
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
<a href="../Chapter9/动手实现PageRank.html">
9.4:动手实现PageRank
</a>
</li>
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
<a href="../Chapter9/实战案例.html">
9.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.11" data-path="./">
<a href="./">
第十章 推荐系统
</a>
<ul class="articles">
<li class="chapter " data-level="1.11.1" data-path="推荐系统概述.html">
<a href="推荐系统概述.html">
10.1:推荐系统概述
</a>
</li>
<li class="chapter " data-level="1.11.2" data-path="基于矩阵分解的协同过滤算法思想.html">
<a href="基于矩阵分解的协同过滤算法思想.html">
10.2:基于矩阵分解的协同过滤算法思想
</a>
</li>
<li class="chapter " data-level="1.11.3" data-path="基于矩阵分解的协同过滤算法原理.html">
<a href="基于矩阵分解的协同过滤算法原理.html">
10.3:基于矩阵分解的协同过滤算法原理
</a>
</li>
<li class="chapter " data-level="1.11.4" data-path="基于矩阵分解的协同过滤算法流程.html">
<a href="基于矩阵分解的协同过滤算法流程.html">
10.4:基于矩阵分解的协同过滤算法流程
</a>
</li>
<li class="chapter " data-level="1.11.5" data-path="动手实现基于矩阵分解的协同过滤.html">
<a href="动手实现基于矩阵分解的协同过滤.html">
10.5:动手实现基于矩阵分解的协同过滤
</a>
</li>
<li class="chapter active" data-level="1.11.6" data-path="实战案例.html">
<a href="实战案例.html">
10.6:实战案例
</a>
</li>
</ul>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >10.6:实战案例</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="106&#x5B9E;&#x6218;&#x6848;&#x4F8B;">10.6:&#x5B9E;&#x6218;&#x6848;&#x4F8B;</h1>
<h2 id="&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x6570;&#x636E;">&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x6570;&#x636E;</h2>
<p>&#x672C;&#x6B21;&#x4F7F;&#x7528;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x6570;&#x636E;&#x4E3A;<code>672</code>&#x4E2A;&#x7528;&#x6237;&#x5BF9;<code>9123</code>&#x90E8;&#x7535;&#x5F71;&#x7684;&#x8BC4;&#x5206;&#x8BB0;&#x5F55;&#xFF0C;&#x90E8;&#x5206;&#x6570;&#x636E;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>userId</th>
<th>movieRow</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>30</td>
<td>4</td>
</tr>
</tbody>
</table>
<p>&#x5176;&#x4E2D;&#xFF1A;</p>
<pre><code>userId&#xFF1A;&#x7528;&#x6237;&#x7F16;&#x53F7;
movieRow:&#x7535;&#x5F71;&#x7F16;&#x53F7;
rating:&#x8BC4;&#x5206;&#x503C;
</code></pre><p>&#x5982;:</p>
<ul>
<li>&#x7B2C;&#x4E00;&#x884C;&#x6570;&#x636E;&#x8868;&#x793A;&#x7528;&#x6237;<code>1</code>&#x5BF9;&#x7535;&#x5F71;<code>30</code>&#x8BC4;&#x5206;&#x4E3A;<code>2.5</code>&#x5206;&#x3002;</li>
<li>&#x7B2C;&#x4E8C;&#x884C;&#x6570;&#x636E;&#x8868;&#x793A;&#x7528;&#x6237;<code>7</code>&#x5BF9;&#x7535;&#x5F71;<code>30</code>&#x8BC4;&#x5206;&#x4E3A;<code>3</code>&#x5206;&#x3002;</li>
</ul>
<p>&#x7136;&#x540E;&#xFF0C;&#x6211;&#x4EEC;&#x8FD8;&#x6709;&#x7535;&#x5F71;&#x7F16;&#x53F7;&#x4E0E;&#x7535;&#x5F71;&#x540D;&#x5B57;&#x5BF9;&#x5E94;&#x7684;&#x6570;&#x636E;&#x5982;&#x4E0B;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>movieRow</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Toy Story (1995)</td>
</tr>
<tr>
<td>1</td>
<td>Jumanji (1995)</td>
</tr>
<tr>
<td>2</td>
<td>Grumpier Old Men (1995)</td>
</tr>
<tr>
<td>3</td>
<td>Waiting to Exhale (1995)</td>
</tr>
</tbody>
</table>
<p>&#x5176;&#x4E2D;&#xFF1A;</p>
<pre><code>movieRow&#xFF1A;&#x7535;&#x5F71;&#x7F16;&#x53F7;
title&#xFF1A;&#x7535;&#x5F71;&#x540D;&#x79F0;
</code></pre><p><a href="https://pan.baidu.com/s/1kPLXbkGxMXllXBiNg1yCMQ" target="_blank">&#x6570;&#x636E;&#x4E0B;&#x8F7D;&#x8FDE;&#x63A5; &#x63D0;&#x53D6;&#x7801;&#xFF1A;ve3v</a></p>
<h2 id="&#x6784;&#x9020;&#x7528;&#x6237;-&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x77E9;&#x9635;">&#x6784;&#x9020;&#x7528;&#x6237;-&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x77E9;&#x9635;</h2>
<p>&#x5927;&#x5BB6;&#x5DF2;&#x7ECF;&#x77E5;&#x9053;&#xFF0C;&#x8981;&#x4F7F;&#x7528;&#x57FA;&#x4E8E;&#x77E9;&#x9635;&#x5206;&#x89E3;&#x7684;&#x534F;&#x540C;&#x8FC7;&#x6EE4;&#x7B97;&#x6CD5;&#xFF0C;&#x9996;&#x5148;&#x5F97;&#x6709;&#x7528;&#x6237;&#x4E0E;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x7684;&#x77E9;&#x9635;&#xFF0C;&#x800C;&#x6211;&#x4EEC;&#x5B9E;&#x9645;&#x4E2D;&#x7684;&#x6570;&#x636E;&#x5E76;&#x4E0D;&#x662F;&#x4EE5;&#x8FD9;&#x6837;&#x7684;&#x5F62;&#x5F0F;&#x4FDD;&#x5B58;&#xFF0C;&#x6240;&#x4EE5;&#x5728;&#x4F7F;&#x7528;&#x7B97;&#x6CD5;&#x524D;&#x8981;&#x5148;&#x6784;&#x9020;&#x51FA;&#x7528;&#x6237;-&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x77E9;&#x9635;&#xFF0C;<code>python</code>&#x5B9E;&#x73B0;&#x4EE3;&#x7801;&#x5982;&#x4E0B;&#xFF1A;</p>
<pre><code class="lang-python"><span class="hljs-keyword">import</span> numpy <span class="hljs-keyword">as</span> np
<span class="hljs-comment">#&#x83B7;&#x53D6;&#x7528;&#x6237;&#x6570;&#x4E0E;&#x7535;&#x5F71;&#x6570;</span>
userNo = max(ratings_df[<span class="hljs-string">&apos;userId&apos;</span>])+<span class="hljs-number">1</span>
movieNo = max(ratings_df[<span class="hljs-string">&apos;movieRow&apos;</span>])+<span class="hljs-number">1</span>
<span class="hljs-comment">#&#x521B;&#x5EFA;&#x7535;&#x5F71;&#x8BC4;&#x5206;&#x8868;</span>
rating = np.zeros((userNo,movieNo))
<span class="hljs-keyword">for</span> index,row <span class="hljs-keyword">in</span> ratings_df.iterrows():
rating[int(row[<span class="hljs-string">&apos;userId&apos;</span>]),int(row[<span class="hljs-string">&apos;movieRow&apos;</span>])]=row[<span class="hljs-string">&apos;rating&apos;</span>]
</code></pre>
<p>&#x6784;&#x9020;&#x51FA;&#x8868;&#x683C;&#x540E;&#xFF0C;&#x6211;&#x4EEC;&#x5C31;&#x80FD;&#x4F7F;&#x7528;&#x4E0A;&#x4E00;&#x5173;&#x5B9E;&#x73B0;&#x7684;&#x65B9;&#x6CD5;&#x6765;&#x5BF9;&#x7528;&#x6237;&#x8FDB;&#x884C;&#x7535;&#x5F71;&#x63A8;&#x8350;&#x4E86;&#xFF1A;</p>
<pre><code class="lang-python">recommend(1,1e-4,0.999,20,100,rating)
&gt;&gt;&gt;
&#x4E3A;&#x7528;&#x6237;1&#x63A8;&#x8350;&#x7684;&#x7535;&#x5F71;&#x4E3A;&#xFF1A;
1:Rumble Fish (1983)
2:Aquamarine (2006)
3:Stay Alive (2006)
4:Betrayal, The (Nerakhoon) (2008)
5:Midnight Express (1978)&#x3002;
recommend(666,1e-4,0.999,20,100,rating)
&gt;&gt;&gt;
&#x4E3A;&#x7528;&#x6237;666&#x63A8;&#x8350;&#x7684;&#x7535;&#x5F71;&#x4E3A;&#xFF1A;
1:Aquamarine (2006)
2:It&apos;s a Boy Girl Thing (2006)
3:Kill the Messenger (2014)
4:Onion Field, The (1979)
5:Wind Rises, The (Kaze tachinu) (2013)&#x3002;
recommend(555,1e-4,0.999,20,100,rating)
&gt;&gt;&gt;
&#x4E3A;&#x7528;&#x6237;555&#x63A8;&#x8350;&#x7684;&#x7535;&#x5F71;&#x4E3A;&#xFF1A;
1:Return from Witch Mountain (1978)
2:Hitcher, The (2007)
3:Betrayal, The (Nerakhoon) (2008)
4:Listen to Me Marlon (2015)
5:World of Tomorrow (2015)&#x3002;
recommend(88,1e-4,0.999,20,100,rating)
&gt;&gt;&gt;
&#x4E3A;&#x7528;&#x6237;88&#x63A8;&#x8350;&#x7684;&#x7535;&#x5F71;&#x4E3A;&#xFF1A;
1:Now, Voyager (1942)
2:Betrayal, The (Nerakhoon) (2008)
3:Aquamarine (2006)
4:Post Grad (2009)
5:Hitcher, The (2007)
</code></pre>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="动手实现基于矩阵分解的协同过滤.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page: 10.5:动手实现基于矩阵分解的协同过滤">
<i class="fa fa-angle-left"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"10.6:实战案例","level":"1.11.6","depth":2,"previous":{"title":"10.5:动手实现基于矩阵分解的协同过滤","level":"1.11.5","depth":2,"path":"Chapter10/动手实现基于矩阵分解的协同过滤.md","ref":"Chapter10/动手实现基于矩阵分解的协同过滤.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter10/实战案例.md","mtime":"2019-07-04T02:56:34.464Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
</body>
</html>