You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1157 lines
34 KiB

<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>6.5:实战案例 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="../Chapter7/" />
<link rel="prev" href="动手实现决策树.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
前言
</a>
</li>
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
<a href="../Chapter1/">
第一章 绪论
</a>
<ul class="articles">
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
<a href="../Chapter1/为什么要数据挖掘.html">
1.1:为什么要数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
<a href="../Chapter1/什么是数据挖掘.html">
1.2: 什么是数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
<a href="../Chapter1/数据挖掘主要任务.html">
1.3:数据挖掘主要任务
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
<a href="../Chapter2/">
第二章 数据探索
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
<a href="../Chapter2/数据与属性.html">
2.1:数据与属性
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
<a href="../Chapter2/数据的基本统计指标.html">
2.2:数据的基本统计指标
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
<a href="../Chapter2/数据可视化.html">
2.3:数据可视化
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
<a href="../Chapter2/相似性度量.html">
2.4:相似性度量
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
<a href="../Chapter3/">
第三章 数据预处理
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
<a href="../Chapter3/为什么要数据预处理.html">
3.1:为什么要数据预处理
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
<a href="../Chapter3/标准化.html">
3.2:标准化
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
<a href="../Chapter3/非线性变换.html">
3.3:非线性变换
</a>
</li>
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
<a href="../Chapter3/归一化.html">
3.4:归一化
</a>
</li>
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
<a href="../Chapter3/离散值编码.html">
3.5:离散值编码
</a>
</li>
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
<a href="../Chapter3/生成多项式特征.html">
3.6:生成多项式特征
</a>
</li>
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
<a href="../Chapter3/估算缺失值.html">
3.7:估算缺失值
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
<a href="../Chapter4/">
第四章 k-近邻
</a>
<ul class="articles">
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
<a href="../Chapter4/k-近邻算法思想.html">
4.1:k-近邻算法思想
</a>
</li>
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
<a href="../Chapter4/k-近邻算法原理.html">
4.2:k-近邻算法原理
</a>
</li>
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
<a href="../Chapter4/k-近邻算法流程.html">
4.3:k-近邻算法流程
</a>
</li>
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
<a href="../Chapter4/动手实现k-近邻.html">
4.4:动手实现k-近邻
</a>
</li>
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
<a href="../Chapter4/实战案例.html">
4.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
<a href="../Chapter5/">
第五章 线性回归
</a>
<ul class="articles">
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
<a href="../Chapter5/线性回归算法思想.html">
5.1:线性回归算法思想
</a>
</li>
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
<a href="../Chapter5/线性回归算法原理.html">
5.2:线性回归算法原理
</a>
</li>
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
<a href="../Chapter5/线性回归算法流程.html">
5.3:线性回归算法流程
</a>
</li>
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
<a href="../Chapter5/动手实现线性回归.html">
5.4:动手实现线性回归
</a>
</li>
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
<a href="../Chapter5/实战案例.html">
5.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="./">
<a href="./">
第六章 决策树
</a>
<ul class="articles">
<li class="chapter " data-level="1.7.1" data-path="决策树算法思想.html">
<a href="决策树算法思想.html">
6.1:决策树算法思想
</a>
</li>
<li class="chapter " data-level="1.7.2" data-path="决策树算法原理.html">
<a href="决策树算法原理.html">
6.2:决策树算法原理
</a>
</li>
<li class="chapter " data-level="1.7.3" data-path="决策树算法流程.html">
<a href="决策树算法流程.html">
6.3:决策树算法流程
</a>
</li>
<li class="chapter " data-level="1.7.4" data-path="动手实现决策树.html">
<a href="动手实现决策树.html">
6.4:动手实现决策树
</a>
</li>
<li class="chapter active" data-level="1.7.5" data-path="实战案例.html">
<a href="实战案例.html">
6.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.8" data-path="../Chapter7/">
<a href="../Chapter7/">
第七章 k-均值
</a>
<ul class="articles">
<li class="chapter " data-level="1.8.1" data-path="../Chapter7/k-均值算法思想.html">
<a href="../Chapter7/k-均值算法思想.html">
7.1:k-均值算法思想
</a>
</li>
<li class="chapter " data-level="1.8.2" data-path="../Chapter7/k-均值算法原理.html">
<a href="../Chapter7/k-均值算法原理.html">
7.2:k-均值算法原理
</a>
</li>
<li class="chapter " data-level="1.8.3" data-path="../Chapter7/k-均值算法流程.html">
<a href="../Chapter7/k-均值算法流程.html">
7.3:k-均值算法流程
</a>
</li>
<li class="chapter " data-level="1.8.4" data-path="../Chapter7/动手实现k-均值.html">
<a href="../Chapter7/动手实现k-均值.html">
7.4:动手实现k-均值
</a>
</li>
<li class="chapter " data-level="1.8.5" data-path="../Chapter7/实战案例.html">
<a href="../Chapter7/实战案例.html">
7.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
<a href="../Chapter8/">
第八章 Apriori
</a>
<ul class="articles">
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
<a href="../Chapter8/Apriori算法思想.html">
8.1:Apriori算法思想
</a>
</li>
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
<a href="../Chapter8/Apriori算法原理.html">
8.2:Apriori算法原理
</a>
</li>
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
<a href="../Chapter8/Apriori算法流程.html">
8.3:Apriori算法流程
</a>
</li>
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
<a href="../Chapter8/动手实现Apriori.html">
8.4:动手实现Apriori
</a>
</li>
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
<a href="../Chapter8/实战案例.html">
8.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
<a href="../Chapter9/">
第九章 PageRank
</a>
<ul class="articles">
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
<a href="../Chapter9/PageRank算法思想.html">
9.1:PageRank算法思想
</a>
</li>
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
<a href="../Chapter9/PageRank算法原理.html">
9.2:PageRank算法原理
</a>
</li>
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
<a href="../Chapter9/PageRank算法流程.html">
9.3:PageRank算法流程
</a>
</li>
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
<a href="../Chapter9/动手实现PageRank.html">
9.4:动手实现PageRank
</a>
</li>
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
<a href="../Chapter9/实战案例.html">
9.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.11" data-path="../Chapter10/">
<a href="../Chapter10/">
第十章 推荐系统
</a>
<ul class="articles">
<li class="chapter " data-level="1.11.1" data-path="../Chapter10/推荐系统概述.html">
<a href="../Chapter10/推荐系统概述.html">
10.1:推荐系统概述
</a>
</li>
<li class="chapter " data-level="1.11.2" data-path="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
10.2:基于矩阵分解的协同过滤算法思想
</a>
</li>
<li class="chapter " data-level="1.11.3" data-path="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
10.3:基于矩阵分解的协同过滤算法原理
</a>
</li>
<li class="chapter " data-level="1.11.4" data-path="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
10.4:基于矩阵分解的协同过滤算法流程
</a>
</li>
<li class="chapter " data-level="1.11.5" data-path="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
<a href="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
10.5:动手实现基于矩阵分解的协同过滤
</a>
</li>
<li class="chapter " data-level="1.11.6" data-path="../Chapter10/实战案例.html">
<a href="../Chapter10/实战案例.html">
10.6:实战案例
</a>
</li>
</ul>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >6.5:实战案例</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="65&#x5B9E;&#x6218;&#x6848;&#x4F8B;">6.5:&#x5B9E;&#x6218;&#x6848;&#x4F8B;</h1>
<h3 id="&#x9E22;&#x5C3E;&#x82B1;&#x6570;&#x636E;">&#x9E22;&#x5C3E;&#x82B1;&#x6570;&#x636E;</h3>
<p>&#x9E22;&#x5C3E;&#x82B1;&#x6570;&#x636E;&#x96C6;&#x662F;&#x4E00;&#x7C7B;&#x591A;&#x91CD;&#x53D8;&#x91CF;&#x5206;&#x6790;&#x7684;<strong>&#x6570;&#x636E;&#x96C6;</strong>&#xFF0C;&#x4E00;&#x5171;&#x6709;<code>150</code>&#x4E2A;&#x6837;&#x672C;&#xFF0C;&#x901A;&#x8FC7;<strong>&#x82B1;&#x843C;&#x957F;&#x5EA6;</strong>&#xFF0C;<strong>&#x82B1;&#x843C;&#x5BBD;&#x5EA6;</strong>&#xFF0C;<strong>&#x82B1;&#x74E3;&#x957F;&#x5EA6;</strong>&#xFF0C;<strong>&#x82B1;&#x74E3;&#x5BBD;&#x5EA6;</strong> <code>4</code>&#x4E2A;&#x7279;&#x5F81;&#x9884;&#x6D4B;&#x9E22;&#x5C3E;&#x82B1;&#x5349;&#x5C5E;&#x4E8E;&#xFF08;<code>Setosa</code>&#xFF0C;<code>Versicolour</code>&#xFF0C;<code>Virginica</code>&#xFF09;&#x4E09;&#x4E2A;&#x79CD;&#x7C7B;&#x4E2D;&#x7684;&#x54EA;&#x4E00;&#x7C7B;&#x3002;</p>
<p>&#x6570;&#x636E;&#x96C6;&#x4E2D;&#x90E8;&#x5206;<strong>&#x6570;&#x636E;</strong>&#x5982;&#x4E0B;&#x6240;&#x793A;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x82B1;&#x843C;&#x957F;&#x5EA6;</th>
<th>&#x82B1;&#x843C;&#x5BBD;&#x5EA6;</th>
<th>&#x82B1;&#x74E3;&#x957F;&#x5EA6;</th>
<th>&#x82B1;&#x74E3;&#x5BBD;&#x5EA6;</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>4.9</td>
<td>3.2</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>4.7</td>
<td>3.1</td>
<td>1.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
<p>&#x5176;&#x4E2D;&#x6BCF;&#x4E00;&#x884C;&#x4EE3;&#x8868;&#x4E00;&#x4E2A;&#x9E22;&#x5C3E;&#x82B1;&#x6837;&#x672C;&#x5404;&#x4E2A;&#x5C5E;&#x6027;&#x7684;&#x503C;&#x3002;</p>
<p>&#x6570;&#x636E;&#x96C6;&#x4E2D;&#x90E8;&#x5206;<strong>&#x6807;&#x7B7E;</strong>&#x5982;&#x4E0B;&#x56FE;&#x6240;&#x793A;&#xFF1A;</p>
<table>
<thead>
<tr>
<th>&#x6807;&#x7B7E;</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
<p>&#x6807;&#x7B7E;&#x4E2D;&#x7684;&#x503C;<code>0</code>,<code>1</code>,<code>2</code>&#x5206;&#x522B;&#x4EE3;&#x8868;&#x9E22;&#x5C3E;&#x82B1;&#x4E09;&#x79CD;&#x4E0D;&#x540C;&#x7684;&#x7C7B;&#x522B;&#x3002;</p>
<p>&#x6211;&#x4EEC;&#x53EF;&#x4EE5;&#x76F4;&#x63A5;&#x4F7F;&#x7528;<code>sklearn</code>&#x76F4;&#x63A5;&#x5BF9;&#x6570;&#x636E;&#x8FDB;&#x884C;&#x52A0;&#x8F7D;&#xFF0C;&#x4EE3;&#x7801;&#x5982;&#x4E0B;&#xFF1A;</p>
<pre><code class="lang-python"><span class="hljs-keyword">from</span> sklearn.datasets <span class="hljs-keyword">import</span> load_iris
<span class="hljs-comment">#&#x52A0;&#x8F7D;&#x9E22;&#x5C3E;&#x82B1;&#x6570;&#x636E;&#x96C6;</span>
iris = load_iris()
<span class="hljs-comment">#&#x83B7;&#x53D6;&#x6570;&#x636E;&#x7279;&#x5F81;&#x4E0E;&#x6807;&#x7B7E;</span>
x,y = iris.data.astype(int),iris.target
</code></pre>
<p>&#x7136;&#x540E;&#x6211;&#x4EEC;&#x5212;&#x5206;&#x51FA;&#x8BAD;&#x7EC3;&#x96C6;&#x4E0E;&#x6D4B;&#x8BD5;&#x96C6;&#xFF0C;&#x8BAD;&#x7EC3;&#x96C6;&#x7528;&#x6765;&#x8BAD;&#x7EC3;&#x6A21;&#x578B;&#xFF0C;&#x6D4B;&#x8BD5;&#x96C6;&#x7528;&#x6765;&#x68C0;&#x6D4B;&#x6A21;&#x578B;&#x6027;&#x80FD;&#x3002;&#x4EE3;&#x7801;&#x5982;&#x4E0B;&#xFF1A;</p>
<pre><code class="lang-python"><span class="hljs-keyword">from</span> sklearn.model_selection <span class="hljs-keyword">import</span> train_test_split
<span class="hljs-comment">#&#x5212;&#x5206;&#x8BAD;&#x7EC3;&#x96C6;&#x6D4B;&#x8BD5;&#x96C6;&#xFF0C;&#x5176;&#x4E2D;&#x6D4B;&#x8BD5;&#x96C6;&#x6837;&#x672C;&#x6570;&#x4E3A;&#x6574;&#x4E2A;&#x6570;&#x636E;&#x96C6;&#x7684;20%</span>
train_feature,test_feature,train_label,test_label = train_test_split(x,y,test_size=<span class="hljs-number">0.2</span>,random_state=<span class="hljs-number">666</span>)
</code></pre>
<h3 id="&#x8FDB;&#x884C;&#x5206;&#x7C7B;">&#x8FDB;&#x884C;&#x5206;&#x7C7B;</h3>
<p>&#x7136;&#x540E;&#x6211;&#x4EEC;&#x518D;&#x4F7F;&#x7528;&#x5B9E;&#x73B0;&#x7684;&#x51B3;&#x7B56;&#x6811;&#x5206;&#x7C7B;&#x65B9;&#x6CD5;&#x5C31;&#x53EF;&#x4EE5;&#x5BF9;&#x6D4B;&#x8BD5;&#x96C6;&#x6570;&#x636E;&#x8FDB;&#x884C;&#x5206;&#x7C7B;&#xFF1A;</p>
<pre><code class="lang-python">predict = dt_clf(train_feature,train_label,test_feature)
predict
&gt;&gt;&gt;array([<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>,<span class="hljs-number">2</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>])
</code></pre>
<p>&#x518D;&#x6839;&#x636E;&#x6D4B;&#x8BD5;&#x96C6;&#x6807;&#x7B7E;&#xFF0C;&#x53EF;&#x4EE5;&#x8BA1;&#x7B97;&#x51FA;&#x6B63;&#x786E;&#x7387;&#xFF1A;</p>
<pre><code class="lang-python">acc = np.mean(predict==test_label)
acc
&gt;&gt;&gt;<span class="hljs-number">1.0</span>
</code></pre>
<p>&#x53EF;&#x4EE5;&#x770B;&#x5230;&#xFF0C;&#x4F7F;&#x7528;&#x51B3;&#x7B56;&#x6811;&#x5BF9;&#x9E22;&#x5C3E;&#x82B1;&#x8FDB;&#x884C;&#x5206;&#x7C7B;&#xFF0C;&#x6B63;&#x786E;&#x7387;&#x53EF;&#x4EE5;&#x8FBE;&#x5230;<code>100%</code></p>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="动手实现决策树.html" class="navigation navigation-prev " aria-label="Previous page: 6.4:动手实现决策树">
<i class="fa fa-angle-left"></i>
</a>
<a href="../Chapter7/" class="navigation navigation-next " aria-label="Next page: 第七章 k-均值">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"6.5:实战案例","level":"1.7.5","depth":2,"next":{"title":"第七章 k-均值","level":"1.8","depth":1,"path":"Chapter7/README.md","ref":"Chapter7/README.md","articles":[{"title":"7.1:k-均值算法思想","level":"1.8.1","depth":2,"path":"Chapter7/k-均值算法思想.md","ref":"Chapter7/k-均值算法思想.md","articles":[]},{"title":"7.2:k-均值算法原理","level":"1.8.2","depth":2,"path":"Chapter7/k-均值算法原理.md","ref":"Chapter7/k-均值算法原理.md","articles":[]},{"title":"7.3:k-均值算法流程","level":"1.8.3","depth":2,"path":"Chapter7/k-均值算法流程.md","ref":"Chapter7/k-均值算法流程.md","articles":[]},{"title":"7.4:动手实现k-均值","level":"1.8.4","depth":2,"path":"Chapter7/动手实现k-均值.md","ref":"Chapter7/动手实现k-均值.md","articles":[]},{"title":"7.5:实战案例","level":"1.8.5","depth":2,"path":"Chapter7/实战案例.md","ref":"Chapter7/实战案例.md","articles":[]}]},"previous":{"title":"6.4:动手实现决策树","level":"1.7.4","depth":2,"path":"Chapter6/动手实现决策树.md","ref":"Chapter6/动手实现决策树.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter6/实战案例.md","mtime":"2019-06-26T02:52:40.656Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
</body>
</html>