You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1157 lines
34 KiB
1157 lines
34 KiB
|
|
<!DOCTYPE HTML>
|
|
<html lang="" >
|
|
<head>
|
|
<meta charset="UTF-8">
|
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
|
<title>6.5:实战案例 · GitBook</title>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
|
<meta name="description" content="">
|
|
<meta name="generator" content="GitBook 3.2.3">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/style.css">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<meta name="HandheldFriendly" content="true"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
|
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
|
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
|
|
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
|
|
|
|
|
|
<link rel="next" href="../Chapter7/" />
|
|
|
|
|
|
<link rel="prev" href="动手实现决策树.html" />
|
|
|
|
|
|
</head>
|
|
<body>
|
|
|
|
<div class="book">
|
|
<div class="book-summary">
|
|
|
|
|
|
<div id="book-search-input" role="search">
|
|
<input type="text" placeholder="Type to search" />
|
|
</div>
|
|
|
|
|
|
<nav role="navigation">
|
|
|
|
|
|
|
|
<ul class="summary">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.1" data-path="../">
|
|
|
|
<a href="../">
|
|
|
|
|
|
前言
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
|
|
|
|
<a href="../Chapter1/">
|
|
|
|
|
|
第一章 绪论
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
|
|
|
|
<a href="../Chapter1/为什么要数据挖掘.html">
|
|
|
|
|
|
1.1:为什么要数据挖掘
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
|
|
|
|
<a href="../Chapter1/什么是数据挖掘.html">
|
|
|
|
|
|
1.2: 什么是数据挖掘
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
|
|
|
|
<a href="../Chapter1/数据挖掘主要任务.html">
|
|
|
|
|
|
1.3:数据挖掘主要任务
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
|
|
|
|
<a href="../Chapter2/">
|
|
|
|
|
|
第二章 数据探索
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
|
|
|
|
<a href="../Chapter2/数据与属性.html">
|
|
|
|
|
|
2.1:数据与属性
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
|
|
|
|
<a href="../Chapter2/数据的基本统计指标.html">
|
|
|
|
|
|
2.2:数据的基本统计指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
|
|
|
|
<a href="../Chapter2/数据可视化.html">
|
|
|
|
|
|
2.3:数据可视化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
|
|
|
|
<a href="../Chapter2/相似性度量.html">
|
|
|
|
|
|
2.4:相似性度量
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
|
|
|
|
<a href="../Chapter3/">
|
|
|
|
|
|
第三章 数据预处理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
|
|
|
|
<a href="../Chapter3/为什么要数据预处理.html">
|
|
|
|
|
|
3.1:为什么要数据预处理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
|
|
|
|
<a href="../Chapter3/标准化.html">
|
|
|
|
|
|
3.2:标准化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
|
|
|
|
<a href="../Chapter3/非线性变换.html">
|
|
|
|
|
|
3.3:非线性变换
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
|
|
|
|
<a href="../Chapter3/归一化.html">
|
|
|
|
|
|
3.4:归一化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
|
|
|
|
<a href="../Chapter3/离散值编码.html">
|
|
|
|
|
|
3.5:离散值编码
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
|
|
|
|
<a href="../Chapter3/生成多项式特征.html">
|
|
|
|
|
|
3.6:生成多项式特征
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
|
|
|
|
<a href="../Chapter3/估算缺失值.html">
|
|
|
|
|
|
3.7:估算缺失值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
|
|
|
|
<a href="../Chapter4/">
|
|
|
|
|
|
第四章 k-近邻
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法思想.html">
|
|
|
|
|
|
4.1:k-近邻算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法原理.html">
|
|
|
|
|
|
4.2:k-近邻算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法流程.html">
|
|
|
|
|
|
4.3:k-近邻算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
|
|
|
|
<a href="../Chapter4/动手实现k-近邻.html">
|
|
|
|
|
|
4.4:动手实现k-近邻
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
|
|
|
|
<a href="../Chapter4/实战案例.html">
|
|
|
|
|
|
4.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
|
|
|
|
<a href="../Chapter5/">
|
|
|
|
|
|
第五章 线性回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
|
|
|
|
<a href="../Chapter5/线性回归算法思想.html">
|
|
|
|
|
|
5.1:线性回归算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
|
|
|
|
<a href="../Chapter5/线性回归算法原理.html">
|
|
|
|
|
|
5.2:线性回归算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
|
|
|
|
<a href="../Chapter5/线性回归算法流程.html">
|
|
|
|
|
|
5.3:线性回归算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
|
|
|
|
<a href="../Chapter5/动手实现线性回归.html">
|
|
|
|
|
|
5.4:动手实现线性回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
|
|
|
|
<a href="../Chapter5/实战案例.html">
|
|
|
|
|
|
5.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7" data-path="./">
|
|
|
|
<a href="./">
|
|
|
|
|
|
第六章 决策树
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.7.1" data-path="决策树算法思想.html">
|
|
|
|
<a href="决策树算法思想.html">
|
|
|
|
|
|
6.1:决策树算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.2" data-path="决策树算法原理.html">
|
|
|
|
<a href="决策树算法原理.html">
|
|
|
|
|
|
6.2:决策树算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.3" data-path="决策树算法流程.html">
|
|
|
|
<a href="决策树算法流程.html">
|
|
|
|
|
|
6.3:决策树算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.4" data-path="动手实现决策树.html">
|
|
|
|
<a href="动手实现决策树.html">
|
|
|
|
|
|
6.4:动手实现决策树
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter active" data-level="1.7.5" data-path="实战案例.html">
|
|
|
|
<a href="实战案例.html">
|
|
|
|
|
|
6.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8" data-path="../Chapter7/">
|
|
|
|
<a href="../Chapter7/">
|
|
|
|
|
|
第七章 k-均值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.8.1" data-path="../Chapter7/k-均值算法思想.html">
|
|
|
|
<a href="../Chapter7/k-均值算法思想.html">
|
|
|
|
|
|
7.1:k-均值算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.2" data-path="../Chapter7/k-均值算法原理.html">
|
|
|
|
<a href="../Chapter7/k-均值算法原理.html">
|
|
|
|
|
|
7.2:k-均值算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.3" data-path="../Chapter7/k-均值算法流程.html">
|
|
|
|
<a href="../Chapter7/k-均值算法流程.html">
|
|
|
|
|
|
7.3:k-均值算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.4" data-path="../Chapter7/动手实现k-均值.html">
|
|
|
|
<a href="../Chapter7/动手实现k-均值.html">
|
|
|
|
|
|
7.4:动手实现k-均值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.5" data-path="../Chapter7/实战案例.html">
|
|
|
|
<a href="../Chapter7/实战案例.html">
|
|
|
|
|
|
7.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
|
|
|
|
<a href="../Chapter8/">
|
|
|
|
|
|
第八章 Apriori
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
|
|
|
|
<a href="../Chapter8/Apriori算法思想.html">
|
|
|
|
|
|
8.1:Apriori算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
|
|
|
|
<a href="../Chapter8/Apriori算法原理.html">
|
|
|
|
|
|
8.2:Apriori算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
|
|
|
|
<a href="../Chapter8/Apriori算法流程.html">
|
|
|
|
|
|
8.3:Apriori算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
|
|
|
|
<a href="../Chapter8/动手实现Apriori.html">
|
|
|
|
|
|
8.4:动手实现Apriori
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
|
|
|
|
<a href="../Chapter8/实战案例.html">
|
|
|
|
|
|
8.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
|
|
|
|
<a href="../Chapter9/">
|
|
|
|
|
|
第九章 PageRank
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
|
|
|
|
<a href="../Chapter9/PageRank算法思想.html">
|
|
|
|
|
|
9.1:PageRank算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
|
|
|
|
<a href="../Chapter9/PageRank算法原理.html">
|
|
|
|
|
|
9.2:PageRank算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
|
|
|
|
<a href="../Chapter9/PageRank算法流程.html">
|
|
|
|
|
|
9.3:PageRank算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
|
|
|
|
<a href="../Chapter9/动手实现PageRank.html">
|
|
|
|
|
|
9.4:动手实现PageRank
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
|
|
|
|
<a href="../Chapter9/实战案例.html">
|
|
|
|
|
|
9.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11" data-path="../Chapter10/">
|
|
|
|
<a href="../Chapter10/">
|
|
|
|
|
|
第十章 推荐系统
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.11.1" data-path="../Chapter10/推荐系统概述.html">
|
|
|
|
<a href="../Chapter10/推荐系统概述.html">
|
|
|
|
|
|
10.1:推荐系统概述
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.2" data-path="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
|
|
|
|
|
|
10.2:基于矩阵分解的协同过滤算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.3" data-path="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
|
|
|
|
|
|
10.3:基于矩阵分解的协同过滤算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.4" data-path="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
|
|
|
|
|
|
10.4:基于矩阵分解的协同过滤算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.5" data-path="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
|
|
|
|
<a href="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
|
|
|
|
|
|
10.5:动手实现基于矩阵分解的协同过滤
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.6" data-path="../Chapter10/实战案例.html">
|
|
|
|
<a href="../Chapter10/实战案例.html">
|
|
|
|
|
|
10.6:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="divider"></li>
|
|
|
|
<li>
|
|
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
|
|
Published with GitBook
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
</div>
|
|
|
|
<div class="book-body">
|
|
|
|
<div class="body-inner">
|
|
|
|
|
|
|
|
<div class="book-header" role="navigation">
|
|
|
|
|
|
<!-- Title -->
|
|
<h1>
|
|
<i class="fa fa-circle-o-notch fa-spin"></i>
|
|
<a href=".." >6.5:实战案例</a>
|
|
</h1>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div class="page-wrapper" tabindex="-1" role="main">
|
|
<div class="page-inner">
|
|
|
|
<div id="book-search-results">
|
|
<div class="search-noresults">
|
|
|
|
<section class="normal markdown-section">
|
|
|
|
<h1 id="65实战案例">6.5:实战案例</h1>
|
|
<h3 id="鸢尾花数据">鸢尾花数据</h3>
|
|
<p>鸢尾花数据集是一类多重变量分析的<strong>数据集</strong>,一共有<code>150</code>个样本,通过<strong>花萼长度</strong>,<strong>花萼宽度</strong>,<strong>花瓣长度</strong>,<strong>花瓣宽度</strong> <code>4</code>个特征预测鸢尾花卉属于(<code>Setosa</code>,<code>Versicolour</code>,<code>Virginica</code>)三个种类中的哪一类。</p>
|
|
<p>数据集中部分<strong>数据</strong>如下所示:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>花萼长度</th>
|
|
<th>花萼宽度</th>
|
|
<th>花瓣长度</th>
|
|
<th>花瓣宽度</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>5.1</td>
|
|
<td>3.5</td>
|
|
<td>1.4</td>
|
|
<td>0.2</td>
|
|
</tr>
|
|
<tr>
|
|
<td>4.9</td>
|
|
<td>3.2</td>
|
|
<td>1.4</td>
|
|
<td>0.2</td>
|
|
</tr>
|
|
<tr>
|
|
<td>4.7</td>
|
|
<td>3.1</td>
|
|
<td>1.3</td>
|
|
<td>0.2</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>其中每一行代表一个鸢尾花样本各个属性的值。</p>
|
|
<p>数据集中部分<strong>标签</strong>如下图所示:</p>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>标签</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>0</td>
|
|
</tr>
|
|
<tr>
|
|
<td>1</td>
|
|
</tr>
|
|
<tr>
|
|
<td>2</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<p>标签中的值<code>0</code>,<code>1</code>,<code>2</code>分别代表鸢尾花三种不同的类别。</p>
|
|
<p>我们可以直接使用<code>sklearn</code>直接对数据进行加载,代码如下:</p>
|
|
<pre><code class="lang-python"><span class="hljs-keyword">from</span> sklearn.datasets <span class="hljs-keyword">import</span> load_iris
|
|
<span class="hljs-comment">#加载鸢尾花数据集</span>
|
|
iris = load_iris()
|
|
<span class="hljs-comment">#获取数据特征与标签</span>
|
|
x,y = iris.data.astype(int),iris.target
|
|
</code></pre>
|
|
<p>然后我们划分出训练集与测试集,训练集用来训练模型,测试集用来检测模型性能。代码如下:</p>
|
|
<pre><code class="lang-python"><span class="hljs-keyword">from</span> sklearn.model_selection <span class="hljs-keyword">import</span> train_test_split
|
|
<span class="hljs-comment">#划分训练集测试集,其中测试集样本数为整个数据集的20%</span>
|
|
train_feature,test_feature,train_label,test_label = train_test_split(x,y,test_size=<span class="hljs-number">0.2</span>,random_state=<span class="hljs-number">666</span>)
|
|
</code></pre>
|
|
<h3 id="进行分类">进行分类</h3>
|
|
<p>然后我们再使用实现的决策树分类方法就可以对测试集数据进行分类:</p>
|
|
<pre><code class="lang-python">predict = dt_clf(train_feature,train_label,test_feature)
|
|
predict
|
|
>>>array([<span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0</span>, <span class="hljs-number">0</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>,<span class="hljs-number">2</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">0</span>, <span class="hljs-number">1</span>, <span class="hljs-number">2</span>, <span class="hljs-number">2</span>])
|
|
</code></pre>
|
|
<p>再根据测试集标签,可以计算出正确率:</p>
|
|
<pre><code class="lang-python">acc = np.mean(predict==test_label)
|
|
acc
|
|
>>><span class="hljs-number">1.0</span>
|
|
</code></pre>
|
|
<p>可以看到,使用决策树对鸢尾花进行分类,正确率可以达到<code>100%</code></p>
|
|
|
|
|
|
</section>
|
|
|
|
</div>
|
|
<div class="search-results">
|
|
<div class="has-results">
|
|
|
|
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
|
|
<ul class="search-results-list"></ul>
|
|
|
|
</div>
|
|
<div class="no-results">
|
|
|
|
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<a href="动手实现决策树.html" class="navigation navigation-prev " aria-label="Previous page: 6.4:动手实现决策树">
|
|
<i class="fa fa-angle-left"></i>
|
|
</a>
|
|
|
|
|
|
<a href="../Chapter7/" class="navigation navigation-next " aria-label="Next page: 第七章 k-均值">
|
|
<i class="fa fa-angle-right"></i>
|
|
</a>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
<script>
|
|
var gitbook = gitbook || [];
|
|
gitbook.push(function() {
|
|
gitbook.page.hasChanged({"page":{"title":"6.5:实战案例","level":"1.7.5","depth":2,"next":{"title":"第七章 k-均值","level":"1.8","depth":1,"path":"Chapter7/README.md","ref":"Chapter7/README.md","articles":[{"title":"7.1:k-均值算法思想","level":"1.8.1","depth":2,"path":"Chapter7/k-均值算法思想.md","ref":"Chapter7/k-均值算法思想.md","articles":[]},{"title":"7.2:k-均值算法原理","level":"1.8.2","depth":2,"path":"Chapter7/k-均值算法原理.md","ref":"Chapter7/k-均值算法原理.md","articles":[]},{"title":"7.3:k-均值算法流程","level":"1.8.3","depth":2,"path":"Chapter7/k-均值算法流程.md","ref":"Chapter7/k-均值算法流程.md","articles":[]},{"title":"7.4:动手实现k-均值","level":"1.8.4","depth":2,"path":"Chapter7/动手实现k-均值.md","ref":"Chapter7/动手实现k-均值.md","articles":[]},{"title":"7.5:实战案例","level":"1.8.5","depth":2,"path":"Chapter7/实战案例.md","ref":"Chapter7/实战案例.md","articles":[]}]},"previous":{"title":"6.4:动手实现决策树","level":"1.7.4","depth":2,"path":"Chapter6/动手实现决策树.md","ref":"Chapter6/动手实现决策树.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter6/实战案例.md","mtime":"2019-06-26T02:52:40.656Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
|
|
});
|
|
</script>
|
|
</div>
|
|
|
|
|
|
<script src="../gitbook/gitbook.js"></script>
|
|
<script src="../gitbook/theme.js"></script>
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|
|
|