You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1198 lines
36 KiB
1198 lines
36 KiB
|
|
<!DOCTYPE HTML>
|
|
<html lang="" >
|
|
<head>
|
|
<meta charset="UTF-8">
|
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
|
<title>7.4:动手实现k-均值 · GitBook</title>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
|
|
<meta name="description" content="">
|
|
<meta name="generator" content="GitBook 3.2.3">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/style.css">
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<meta name="HandheldFriendly" content="true"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
|
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
|
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
|
|
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
|
|
|
|
|
|
<link rel="next" href="实战案例.html" />
|
|
|
|
|
|
<link rel="prev" href="k-均值算法流程.html" />
|
|
|
|
|
|
</head>
|
|
<body>
|
|
|
|
<div class="book">
|
|
<div class="book-summary">
|
|
|
|
|
|
<div id="book-search-input" role="search">
|
|
<input type="text" placeholder="Type to search" />
|
|
</div>
|
|
|
|
|
|
<nav role="navigation">
|
|
|
|
|
|
|
|
<ul class="summary">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="chapter " data-level="1.1" data-path="../">
|
|
|
|
<a href="../">
|
|
|
|
|
|
前言
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
|
|
|
|
<a href="../Chapter1/">
|
|
|
|
|
|
第一章 绪论
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
|
|
|
|
<a href="../Chapter1/为什么要数据挖掘.html">
|
|
|
|
|
|
1.1:为什么要数据挖掘
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
|
|
|
|
<a href="../Chapter1/什么是数据挖掘.html">
|
|
|
|
|
|
1.2: 什么是数据挖掘
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
|
|
|
|
<a href="../Chapter1/数据挖掘主要任务.html">
|
|
|
|
|
|
1.3:数据挖掘主要任务
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
|
|
|
|
<a href="../Chapter2/">
|
|
|
|
|
|
第二章 数据探索
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
|
|
|
|
<a href="../Chapter2/数据与属性.html">
|
|
|
|
|
|
2.1:数据与属性
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
|
|
|
|
<a href="../Chapter2/数据的基本统计指标.html">
|
|
|
|
|
|
2.2:数据的基本统计指标
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
|
|
|
|
<a href="../Chapter2/数据可视化.html">
|
|
|
|
|
|
2.3:数据可视化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
|
|
|
|
<a href="../Chapter2/相似性度量.html">
|
|
|
|
|
|
2.4:相似性度量
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
|
|
|
|
<a href="../Chapter3/">
|
|
|
|
|
|
第三章 数据预处理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
|
|
|
|
<a href="../Chapter3/为什么要数据预处理.html">
|
|
|
|
|
|
3.1:为什么要数据预处理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
|
|
|
|
<a href="../Chapter3/标准化.html">
|
|
|
|
|
|
3.2:标准化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
|
|
|
|
<a href="../Chapter3/非线性变换.html">
|
|
|
|
|
|
3.3:非线性变换
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
|
|
|
|
<a href="../Chapter3/归一化.html">
|
|
|
|
|
|
3.4:归一化
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
|
|
|
|
<a href="../Chapter3/离散值编码.html">
|
|
|
|
|
|
3.5:离散值编码
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
|
|
|
|
<a href="../Chapter3/生成多项式特征.html">
|
|
|
|
|
|
3.6:生成多项式特征
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
|
|
|
|
<a href="../Chapter3/估算缺失值.html">
|
|
|
|
|
|
3.7:估算缺失值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
|
|
|
|
<a href="../Chapter4/">
|
|
|
|
|
|
第四章 k-近邻
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法思想.html">
|
|
|
|
|
|
4.1:k-近邻算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法原理.html">
|
|
|
|
|
|
4.2:k-近邻算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
|
|
|
|
<a href="../Chapter4/k-近邻算法流程.html">
|
|
|
|
|
|
4.3:k-近邻算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
|
|
|
|
<a href="../Chapter4/动手实现k-近邻.html">
|
|
|
|
|
|
4.4:动手实现k-近邻
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
|
|
|
|
<a href="../Chapter4/实战案例.html">
|
|
|
|
|
|
4.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
|
|
|
|
<a href="../Chapter5/">
|
|
|
|
|
|
第五章 线性回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
|
|
|
|
<a href="../Chapter5/线性回归算法思想.html">
|
|
|
|
|
|
5.1:线性回归算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
|
|
|
|
<a href="../Chapter5/线性回归算法原理.html">
|
|
|
|
|
|
5.2:线性回归算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
|
|
|
|
<a href="../Chapter5/线性回归算法流程.html">
|
|
|
|
|
|
5.3:线性回归算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
|
|
|
|
<a href="../Chapter5/动手实现线性回归.html">
|
|
|
|
|
|
5.4:动手实现线性回归
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
|
|
|
|
<a href="../Chapter5/实战案例.html">
|
|
|
|
|
|
5.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7" data-path="../Chapter6/">
|
|
|
|
<a href="../Chapter6/">
|
|
|
|
|
|
第六章 决策树
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.7.1" data-path="../Chapter6/决策树算法思想.html">
|
|
|
|
<a href="../Chapter6/决策树算法思想.html">
|
|
|
|
|
|
6.1:决策树算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.2" data-path="../Chapter6/决策树算法原理.html">
|
|
|
|
<a href="../Chapter6/决策树算法原理.html">
|
|
|
|
|
|
6.2:决策树算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.3" data-path="../Chapter6/决策树算法流程.html">
|
|
|
|
<a href="../Chapter6/决策树算法流程.html">
|
|
|
|
|
|
6.3:决策树算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.4" data-path="../Chapter6/动手实现决策树.html">
|
|
|
|
<a href="../Chapter6/动手实现决策树.html">
|
|
|
|
|
|
6.4:动手实现决策树
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.7.5" data-path="../Chapter6/实战案例.html">
|
|
|
|
<a href="../Chapter6/实战案例.html">
|
|
|
|
|
|
6.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8" data-path="./">
|
|
|
|
<a href="./">
|
|
|
|
|
|
第七章 k-均值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.8.1" data-path="k-均值算法思想.html">
|
|
|
|
<a href="k-均值算法思想.html">
|
|
|
|
|
|
7.1:k-均值算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.2" data-path="k-均值算法原理.html">
|
|
|
|
<a href="k-均值算法原理.html">
|
|
|
|
|
|
7.2:k-均值算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.3" data-path="k-均值算法流程.html">
|
|
|
|
<a href="k-均值算法流程.html">
|
|
|
|
|
|
7.3:k-均值算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter active" data-level="1.8.4" data-path="动手实现k-均值.html">
|
|
|
|
<a href="动手实现k-均值.html">
|
|
|
|
|
|
7.4:动手实现k-均值
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.8.5" data-path="实战案例.html">
|
|
|
|
<a href="实战案例.html">
|
|
|
|
|
|
7.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
|
|
|
|
<a href="../Chapter8/">
|
|
|
|
|
|
第八章 Apriori
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
|
|
|
|
<a href="../Chapter8/Apriori算法思想.html">
|
|
|
|
|
|
8.1:Apriori算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
|
|
|
|
<a href="../Chapter8/Apriori算法原理.html">
|
|
|
|
|
|
8.2:Apriori算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
|
|
|
|
<a href="../Chapter8/Apriori算法流程.html">
|
|
|
|
|
|
8.3:Apriori算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
|
|
|
|
<a href="../Chapter8/动手实现Apriori.html">
|
|
|
|
|
|
8.4:动手实现Apriori
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
|
|
|
|
<a href="../Chapter8/实战案例.html">
|
|
|
|
|
|
8.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
|
|
|
|
<a href="../Chapter9/">
|
|
|
|
|
|
第九章 PageRank
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
|
|
|
|
<a href="../Chapter9/PageRank算法思想.html">
|
|
|
|
|
|
9.1:PageRank算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
|
|
|
|
<a href="../Chapter9/PageRank算法原理.html">
|
|
|
|
|
|
9.2:PageRank算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
|
|
|
|
<a href="../Chapter9/PageRank算法流程.html">
|
|
|
|
|
|
9.3:PageRank算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
|
|
|
|
<a href="../Chapter9/动手实现PageRank.html">
|
|
|
|
|
|
9.4:动手实现PageRank
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
|
|
|
|
<a href="../Chapter9/实战案例.html">
|
|
|
|
|
|
9.5:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11" data-path="../Chapter10/">
|
|
|
|
<a href="../Chapter10/">
|
|
|
|
|
|
第十章 推荐系统
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<ul class="articles">
|
|
|
|
|
|
<li class="chapter " data-level="1.11.1" data-path="../Chapter10/推荐系统概述.html">
|
|
|
|
<a href="../Chapter10/推荐系统概述.html">
|
|
|
|
|
|
10.1:推荐系统概述
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.2" data-path="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
|
|
|
|
|
|
10.2:基于矩阵分解的协同过滤算法思想
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.3" data-path="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
|
|
|
|
|
|
10.3:基于矩阵分解的协同过滤算法原理
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.4" data-path="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
|
|
|
|
<a href="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
|
|
|
|
|
|
10.4:基于矩阵分解的协同过滤算法流程
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.5" data-path="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
|
|
|
|
<a href="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
|
|
|
|
|
|
10.5:动手实现基于矩阵分解的协同过滤
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
<li class="chapter " data-level="1.11.6" data-path="../Chapter10/实战案例.html">
|
|
|
|
<a href="../Chapter10/实战案例.html">
|
|
|
|
|
|
10.6:实战案例
|
|
|
|
</a>
|
|
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
<li class="divider"></li>
|
|
|
|
<li>
|
|
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
|
|
Published with GitBook
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
</div>
|
|
|
|
<div class="book-body">
|
|
|
|
<div class="body-inner">
|
|
|
|
|
|
|
|
<div class="book-header" role="navigation">
|
|
|
|
|
|
<!-- Title -->
|
|
<h1>
|
|
<i class="fa fa-circle-o-notch fa-spin"></i>
|
|
<a href=".." >7.4:动手实现k-均值</a>
|
|
</h1>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div class="page-wrapper" tabindex="-1" role="main">
|
|
<div class="page-inner">
|
|
|
|
<div id="book-search-results">
|
|
<div class="search-noresults">
|
|
|
|
<section class="normal markdown-section">
|
|
|
|
<h1 id="74动手实现k-均值">7.4:动手实现k-均值</h1>
|
|
<pre><code class="lang-python"><span class="hljs-comment">#encoding=utf8</span>
|
|
<span class="hljs-keyword">import</span> numpy <span class="hljs-keyword">as</span> np
|
|
|
|
<span class="hljs-comment"># 计算一个样本与数据集中所有样本的欧氏距离的平方</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">euclidean_distance</span><span class="hljs-params">(one_sample, X)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
one_sample(ndarray):单个样本
|
|
X(ndarray):所有样本
|
|
output:
|
|
distances(ndarray):单个样本到所有样本的欧氏距离平方
|
|
'''</span>
|
|
one_sample = one_sample.reshape(<span class="hljs-number">1</span>, <span class="hljs-number">-1</span>)
|
|
distances = np.power(np.tile(one_sample, (X.shape[<span class="hljs-number">0</span>], <span class="hljs-number">1</span>)) - X, <span class="hljs-number">2</span>).sum(axis=<span class="hljs-number">1</span>)
|
|
<span class="hljs-keyword">return</span> distances
|
|
|
|
<span class="hljs-comment"># 从所有样本中随机选取k个样本作为初始的聚类中心</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">init_random_centroids</span><span class="hljs-params">(k,X)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
k(int):聚类簇的个数
|
|
X(ndarray):所有样本
|
|
output:
|
|
centroids(ndarray):k个簇的聚类中心
|
|
'''</span>
|
|
n_samples, n_features = np.shape(X)
|
|
centroids = np.zeros((k, n_features))
|
|
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(k):
|
|
centroid = X[np.random.choice(range(n_samples))]
|
|
centroids[i] = centroid
|
|
<span class="hljs-keyword">return</span> centroids
|
|
|
|
<span class="hljs-comment"># 返回距离该样本最近的一个中心索引[0, k)</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">_closest_centroid</span><span class="hljs-params">(sample, centroids)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
sample(ndarray):单个样本
|
|
centroids(ndarray):k个簇的聚类中心
|
|
output:
|
|
closest_i(int):最近中心的索引
|
|
'''</span>
|
|
distances = euclidean_distance(sample, centroids)
|
|
closest_i = np.argmin(distances)
|
|
<span class="hljs-keyword">return</span> closest_i
|
|
|
|
<span class="hljs-comment"># 将所有样本进行归类,归类规则就是将该样本归类到与其最近的中心</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">create_clusters</span><span class="hljs-params">(k,centroids, X)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
k(int):聚类簇的个数
|
|
centroids(ndarray):k个簇的聚类中心
|
|
X(ndarray):所有样本
|
|
output:
|
|
clusters(list):列表中有k个元素,每个元素保存相同簇的样本的索引
|
|
'''</span>
|
|
clusters = [[] <span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(k)]
|
|
<span class="hljs-keyword">for</span> sample_i, sample <span class="hljs-keyword">in</span> enumerate(X):
|
|
centroid_i = _closest_centroid(sample, centroids)
|
|
clusters[centroid_i].append(sample_i)
|
|
<span class="hljs-keyword">return</span> clusters
|
|
|
|
<span class="hljs-comment"># 对中心进行更新</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">update_centroids</span><span class="hljs-params">(k,clusters, X)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
k(int):聚类簇的个数
|
|
X(ndarray):所有样本
|
|
output:
|
|
centroids(ndarray):k个簇的聚类中心
|
|
'''</span>
|
|
n_features = np.shape(X)[<span class="hljs-number">1</span>]
|
|
centroids = np.zeros((k, n_features))
|
|
<span class="hljs-keyword">for</span> i, cluster <span class="hljs-keyword">in</span> enumerate(clusters):
|
|
centroid = np.mean(X[cluster], axis=<span class="hljs-number">0</span>)
|
|
centroids[i] = centroid
|
|
<span class="hljs-keyword">return</span> centroids
|
|
|
|
<span class="hljs-comment"># 将所有样本进行归类,其所在的类别的索引就是其类别标签</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">get_cluster_labels</span><span class="hljs-params">(clusters, X)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
clusters(list):列表中有k个元素,每个元素保存相同簇的样本的索引
|
|
X(ndarray):所有样本
|
|
output:
|
|
y_pred(ndarray):所有样本的类别标签
|
|
'''</span>
|
|
y_pred = np.zeros(np.shape(X)[<span class="hljs-number">0</span>])
|
|
<span class="hljs-keyword">for</span> cluster_i, cluster <span class="hljs-keyword">in</span> enumerate(clusters):
|
|
<span class="hljs-keyword">for</span> sample_i <span class="hljs-keyword">in</span> cluster:
|
|
y_pred[sample_i] = cluster_i
|
|
<span class="hljs-keyword">return</span> y_pred
|
|
|
|
<span class="hljs-comment"># 对整个数据集X进行Kmeans聚类,返回其聚类的标签</span>
|
|
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">predict</span><span class="hljs-params">(k,X,max_iterations,varepsilon)</span>:</span>
|
|
<span class="hljs-string">'''
|
|
input:
|
|
k(int):聚类簇的个数
|
|
X(ndarray):所有样本
|
|
max_iterations(int):最大训练轮数
|
|
varepsilon(float):最小误差阈值
|
|
output:
|
|
y_pred(ndarray):所有样本的类别标签
|
|
'''</span>
|
|
<span class="hljs-comment"># 从所有样本中随机选取k样本作为初始的聚类中心</span>
|
|
centroids = init_random_centroids(k,X)
|
|
<span class="hljs-comment"># 迭代,直到算法收敛(上一次的聚类中心和这一次的聚类中心几乎重合)或者达到最大迭代次数</span>
|
|
<span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(max_iterations):
|
|
<span class="hljs-comment"># 将所有进行归类,归类规则就是将该样本归类到与其最近的中心</span>
|
|
clusters = create_clusters(k,centroids, X)
|
|
former_centroids = centroids
|
|
<span class="hljs-comment"># 计算新的聚类中心</span>
|
|
centroids = update_centroids(k,clusters, X)
|
|
<span class="hljs-comment"># 如果聚类中心几乎没有变化,说明算法已经收敛,退出迭代</span>
|
|
diff = centroids - former_centroids
|
|
<span class="hljs-keyword">if</span> diff.any() < varepsilon:
|
|
<span class="hljs-keyword">break</span>
|
|
y_pred = get_cluster_labels(clusters, X)
|
|
<span class="hljs-keyword">return</span> y_pred
|
|
</code></pre>
|
|
|
|
|
|
</section>
|
|
|
|
</div>
|
|
<div class="search-results">
|
|
<div class="has-results">
|
|
|
|
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
|
|
<ul class="search-results-list"></ul>
|
|
|
|
</div>
|
|
<div class="no-results">
|
|
|
|
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<a href="k-均值算法流程.html" class="navigation navigation-prev " aria-label="Previous page: 7.3:k-均值算法流程">
|
|
<i class="fa fa-angle-left"></i>
|
|
</a>
|
|
|
|
|
|
<a href="实战案例.html" class="navigation navigation-next " aria-label="Next page: 7.5:实战案例">
|
|
<i class="fa fa-angle-right"></i>
|
|
</a>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
<script>
|
|
var gitbook = gitbook || [];
|
|
gitbook.push(function() {
|
|
gitbook.page.hasChanged({"page":{"title":"7.4:动手实现k-均值","level":"1.8.4","depth":2,"next":{"title":"7.5:实战案例","level":"1.8.5","depth":2,"path":"Chapter7/实战案例.md","ref":"Chapter7/实战案例.md","articles":[]},"previous":{"title":"7.3:k-均值算法流程","level":"1.8.3","depth":2,"path":"Chapter7/k-均值算法流程.md","ref":"Chapter7/k-均值算法流程.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter7/动手实现k-均值.md","mtime":"2019-06-28T02:16:42.670Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
|
|
});
|
|
</script>
|
|
</div>
|
|
|
|
|
|
<script src="../gitbook/gitbook.js"></script>
|
|
<script src="../gitbook/theme.js"></script>
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
|
|
|
|
|
|
|
|
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|
|
|