You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1198 lines
36 KiB

<!DOCTYPE HTML>
<html lang="" >
<head>
<meta charset="UTF-8">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<title>7.4:动手实现k-均值 · GitBook</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="description" content="">
<meta name="generator" content="GitBook 3.2.3">
<link rel="stylesheet" href="../gitbook/style.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-fontsettings/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-search/search.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-highlight/website.css">
<link rel="stylesheet" href="../gitbook/gitbook-plugin-katex/katex.min.css">
<meta name="HandheldFriendly" content="true"/>
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="apple-touch-icon-precomposed" sizes="152x152" href="../gitbook/images/apple-touch-icon-precomposed-152.png">
<link rel="shortcut icon" href="../gitbook/images/favicon.ico" type="image/x-icon">
<link rel="next" href="实战案例.html" />
<link rel="prev" href="k-均值算法流程.html" />
</head>
<body>
<div class="book">
<div class="book-summary">
<div id="book-search-input" role="search">
<input type="text" placeholder="Type to search" />
</div>
<nav role="navigation">
<ul class="summary">
<li class="chapter " data-level="1.1" data-path="../">
<a href="../">
前言
</a>
</li>
<li class="chapter " data-level="1.2" data-path="../Chapter1/">
<a href="../Chapter1/">
第一章 绪论
</a>
<ul class="articles">
<li class="chapter " data-level="1.2.1" data-path="../Chapter1/为什么要数据挖掘.html">
<a href="../Chapter1/为什么要数据挖掘.html">
1.1:为什么要数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.2" data-path="../Chapter1/什么是数据挖掘.html">
<a href="../Chapter1/什么是数据挖掘.html">
1.2: 什么是数据挖掘
</a>
</li>
<li class="chapter " data-level="1.2.3" data-path="../Chapter1/数据挖掘主要任务.html">
<a href="../Chapter1/数据挖掘主要任务.html">
1.3:数据挖掘主要任务
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.3" data-path="../Chapter2/">
<a href="../Chapter2/">
第二章 数据探索
</a>
<ul class="articles">
<li class="chapter " data-level="1.3.1" data-path="../Chapter2/数据与属性.html">
<a href="../Chapter2/数据与属性.html">
2.1:数据与属性
</a>
</li>
<li class="chapter " data-level="1.3.2" data-path="../Chapter2/数据的基本统计指标.html">
<a href="../Chapter2/数据的基本统计指标.html">
2.2:数据的基本统计指标
</a>
</li>
<li class="chapter " data-level="1.3.3" data-path="../Chapter2/数据可视化.html">
<a href="../Chapter2/数据可视化.html">
2.3:数据可视化
</a>
</li>
<li class="chapter " data-level="1.3.4" data-path="../Chapter2/相似性度量.html">
<a href="../Chapter2/相似性度量.html">
2.4:相似性度量
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.4" data-path="../Chapter3/">
<a href="../Chapter3/">
第三章 数据预处理
</a>
<ul class="articles">
<li class="chapter " data-level="1.4.1" data-path="../Chapter3/为什么要数据预处理.html">
<a href="../Chapter3/为什么要数据预处理.html">
3.1:为什么要数据预处理
</a>
</li>
<li class="chapter " data-level="1.4.2" data-path="../Chapter3/标准化.html">
<a href="../Chapter3/标准化.html">
3.2:标准化
</a>
</li>
<li class="chapter " data-level="1.4.3" data-path="../Chapter3/非线性变换.html">
<a href="../Chapter3/非线性变换.html">
3.3:非线性变换
</a>
</li>
<li class="chapter " data-level="1.4.4" data-path="../Chapter3/归一化.html">
<a href="../Chapter3/归一化.html">
3.4:归一化
</a>
</li>
<li class="chapter " data-level="1.4.5" data-path="../Chapter3/离散值编码.html">
<a href="../Chapter3/离散值编码.html">
3.5:离散值编码
</a>
</li>
<li class="chapter " data-level="1.4.6" data-path="../Chapter3/生成多项式特征.html">
<a href="../Chapter3/生成多项式特征.html">
3.6:生成多项式特征
</a>
</li>
<li class="chapter " data-level="1.4.7" data-path="../Chapter3/估算缺失值.html">
<a href="../Chapter3/估算缺失值.html">
3.7:估算缺失值
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.5" data-path="../Chapter4/">
<a href="../Chapter4/">
第四章 k-近邻
</a>
<ul class="articles">
<li class="chapter " data-level="1.5.1" data-path="../Chapter4/k-近邻算法思想.html">
<a href="../Chapter4/k-近邻算法思想.html">
4.1:k-近邻算法思想
</a>
</li>
<li class="chapter " data-level="1.5.2" data-path="../Chapter4/k-近邻算法原理.html">
<a href="../Chapter4/k-近邻算法原理.html">
4.2:k-近邻算法原理
</a>
</li>
<li class="chapter " data-level="1.5.3" data-path="../Chapter4/k-近邻算法流程.html">
<a href="../Chapter4/k-近邻算法流程.html">
4.3:k-近邻算法流程
</a>
</li>
<li class="chapter " data-level="1.5.4" data-path="../Chapter4/动手实现k-近邻.html">
<a href="../Chapter4/动手实现k-近邻.html">
4.4:动手实现k-近邻
</a>
</li>
<li class="chapter " data-level="1.5.5" data-path="../Chapter4/实战案例.html">
<a href="../Chapter4/实战案例.html">
4.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.6" data-path="../Chapter5/">
<a href="../Chapter5/">
第五章 线性回归
</a>
<ul class="articles">
<li class="chapter " data-level="1.6.1" data-path="../Chapter5/线性回归算法思想.html">
<a href="../Chapter5/线性回归算法思想.html">
5.1:线性回归算法思想
</a>
</li>
<li class="chapter " data-level="1.6.2" data-path="../Chapter5/线性回归算法原理.html">
<a href="../Chapter5/线性回归算法原理.html">
5.2:线性回归算法原理
</a>
</li>
<li class="chapter " data-level="1.6.3" data-path="../Chapter5/线性回归算法流程.html">
<a href="../Chapter5/线性回归算法流程.html">
5.3:线性回归算法流程
</a>
</li>
<li class="chapter " data-level="1.6.4" data-path="../Chapter5/动手实现线性回归.html">
<a href="../Chapter5/动手实现线性回归.html">
5.4:动手实现线性回归
</a>
</li>
<li class="chapter " data-level="1.6.5" data-path="../Chapter5/实战案例.html">
<a href="../Chapter5/实战案例.html">
5.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.7" data-path="../Chapter6/">
<a href="../Chapter6/">
第六章 决策树
</a>
<ul class="articles">
<li class="chapter " data-level="1.7.1" data-path="../Chapter6/决策树算法思想.html">
<a href="../Chapter6/决策树算法思想.html">
6.1:决策树算法思想
</a>
</li>
<li class="chapter " data-level="1.7.2" data-path="../Chapter6/决策树算法原理.html">
<a href="../Chapter6/决策树算法原理.html">
6.2:决策树算法原理
</a>
</li>
<li class="chapter " data-level="1.7.3" data-path="../Chapter6/决策树算法流程.html">
<a href="../Chapter6/决策树算法流程.html">
6.3:决策树算法流程
</a>
</li>
<li class="chapter " data-level="1.7.4" data-path="../Chapter6/动手实现决策树.html">
<a href="../Chapter6/动手实现决策树.html">
6.4:动手实现决策树
</a>
</li>
<li class="chapter " data-level="1.7.5" data-path="../Chapter6/实战案例.html">
<a href="../Chapter6/实战案例.html">
6.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.8" data-path="./">
<a href="./">
第七章 k-均值
</a>
<ul class="articles">
<li class="chapter " data-level="1.8.1" data-path="k-均值算法思想.html">
<a href="k-均值算法思想.html">
7.1:k-均值算法思想
</a>
</li>
<li class="chapter " data-level="1.8.2" data-path="k-均值算法原理.html">
<a href="k-均值算法原理.html">
7.2:k-均值算法原理
</a>
</li>
<li class="chapter " data-level="1.8.3" data-path="k-均值算法流程.html">
<a href="k-均值算法流程.html">
7.3:k-均值算法流程
</a>
</li>
<li class="chapter active" data-level="1.8.4" data-path="动手实现k-均值.html">
<a href="动手实现k-均值.html">
7.4:动手实现k-均值
</a>
</li>
<li class="chapter " data-level="1.8.5" data-path="实战案例.html">
<a href="实战案例.html">
7.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.9" data-path="../Chapter8/">
<a href="../Chapter8/">
第八章 Apriori
</a>
<ul class="articles">
<li class="chapter " data-level="1.9.1" data-path="../Chapter8/Apriori算法思想.html">
<a href="../Chapter8/Apriori算法思想.html">
8.1:Apriori算法思想
</a>
</li>
<li class="chapter " data-level="1.9.2" data-path="../Chapter8/Apriori算法原理.html">
<a href="../Chapter8/Apriori算法原理.html">
8.2:Apriori算法原理
</a>
</li>
<li class="chapter " data-level="1.9.3" data-path="../Chapter8/Apriori算法流程.html">
<a href="../Chapter8/Apriori算法流程.html">
8.3:Apriori算法流程
</a>
</li>
<li class="chapter " data-level="1.9.4" data-path="../Chapter8/动手实现Apriori.html">
<a href="../Chapter8/动手实现Apriori.html">
8.4:动手实现Apriori
</a>
</li>
<li class="chapter " data-level="1.9.5" data-path="../Chapter8/实战案例.html">
<a href="../Chapter8/实战案例.html">
8.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.10" data-path="../Chapter9/">
<a href="../Chapter9/">
第九章 PageRank
</a>
<ul class="articles">
<li class="chapter " data-level="1.10.1" data-path="../Chapter9/PageRank算法思想.html">
<a href="../Chapter9/PageRank算法思想.html">
9.1:PageRank算法思想
</a>
</li>
<li class="chapter " data-level="1.10.2" data-path="../Chapter9/PageRank算法原理.html">
<a href="../Chapter9/PageRank算法原理.html">
9.2:PageRank算法原理
</a>
</li>
<li class="chapter " data-level="1.10.3" data-path="../Chapter9/PageRank算法流程.html">
<a href="../Chapter9/PageRank算法流程.html">
9.3:PageRank算法流程
</a>
</li>
<li class="chapter " data-level="1.10.4" data-path="../Chapter9/动手实现PageRank.html">
<a href="../Chapter9/动手实现PageRank.html">
9.4:动手实现PageRank
</a>
</li>
<li class="chapter " data-level="1.10.5" data-path="../Chapter9/实战案例.html">
<a href="../Chapter9/实战案例.html">
9.5:实战案例
</a>
</li>
</ul>
</li>
<li class="chapter " data-level="1.11" data-path="../Chapter10/">
<a href="../Chapter10/">
第十章 推荐系统
</a>
<ul class="articles">
<li class="chapter " data-level="1.11.1" data-path="../Chapter10/推荐系统概述.html">
<a href="../Chapter10/推荐系统概述.html">
10.1:推荐系统概述
</a>
</li>
<li class="chapter " data-level="1.11.2" data-path="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法思想.html">
10.2:基于矩阵分解的协同过滤算法思想
</a>
</li>
<li class="chapter " data-level="1.11.3" data-path="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法原理.html">
10.3:基于矩阵分解的协同过滤算法原理
</a>
</li>
<li class="chapter " data-level="1.11.4" data-path="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
<a href="../Chapter10/基于矩阵分解的协同过滤算法流程.html">
10.4:基于矩阵分解的协同过滤算法流程
</a>
</li>
<li class="chapter " data-level="1.11.5" data-path="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
<a href="../Chapter10/动手实现基于矩阵分解的协同过滤.html">
10.5:动手实现基于矩阵分解的协同过滤
</a>
</li>
<li class="chapter " data-level="1.11.6" data-path="../Chapter10/实战案例.html">
<a href="../Chapter10/实战案例.html">
10.6:实战案例
</a>
</li>
</ul>
</li>
<li class="divider"></li>
<li>
<a href="https://www.gitbook.com" target="blank" class="gitbook-link">
Published with GitBook
</a>
</li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<!-- Title -->
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i>
<a href=".." >7.4:动手实现k-均值</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<div id="book-search-results">
<div class="search-noresults">
<section class="normal markdown-section">
<h1 id="74&#x52A8;&#x624B;&#x5B9E;&#x73B0;k-&#x5747;&#x503C;">7.4:&#x52A8;&#x624B;&#x5B9E;&#x73B0;k-&#x5747;&#x503C;</h1>
<pre><code class="lang-python"><span class="hljs-comment">#encoding=utf8</span>
<span class="hljs-keyword">import</span> numpy <span class="hljs-keyword">as</span> np
<span class="hljs-comment"># &#x8BA1;&#x7B97;&#x4E00;&#x4E2A;&#x6837;&#x672C;&#x4E0E;&#x6570;&#x636E;&#x96C6;&#x4E2D;&#x6240;&#x6709;&#x6837;&#x672C;&#x7684;&#x6B27;&#x6C0F;&#x8DDD;&#x79BB;&#x7684;&#x5E73;&#x65B9;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">euclidean_distance</span><span class="hljs-params">(one_sample, X)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
one_sample(ndarray):&#x5355;&#x4E2A;&#x6837;&#x672C;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
output:
distances(ndarray):&#x5355;&#x4E2A;&#x6837;&#x672C;&#x5230;&#x6240;&#x6709;&#x6837;&#x672C;&#x7684;&#x6B27;&#x6C0F;&#x8DDD;&#x79BB;&#x5E73;&#x65B9;
&apos;&apos;&apos;</span>
one_sample = one_sample.reshape(<span class="hljs-number">1</span>, <span class="hljs-number">-1</span>)
distances = np.power(np.tile(one_sample, (X.shape[<span class="hljs-number">0</span>], <span class="hljs-number">1</span>)) - X, <span class="hljs-number">2</span>).sum(axis=<span class="hljs-number">1</span>)
<span class="hljs-keyword">return</span> distances
<span class="hljs-comment"># &#x4ECE;&#x6240;&#x6709;&#x6837;&#x672C;&#x4E2D;&#x968F;&#x673A;&#x9009;&#x53D6;k&#x4E2A;&#x6837;&#x672C;&#x4F5C;&#x4E3A;&#x521D;&#x59CB;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">init_random_centroids</span><span class="hljs-params">(k,X)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
k(int):&#x805A;&#x7C7B;&#x7C07;&#x7684;&#x4E2A;&#x6570;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
output:
centroids(ndarray):k&#x4E2A;&#x7C07;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;
&apos;&apos;&apos;</span>
n_samples, n_features = np.shape(X)
centroids = np.zeros((k, n_features))
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(k):
centroid = X[np.random.choice(range(n_samples))]
centroids[i] = centroid
<span class="hljs-keyword">return</span> centroids
<span class="hljs-comment"># &#x8FD4;&#x56DE;&#x8DDD;&#x79BB;&#x8BE5;&#x6837;&#x672C;&#x6700;&#x8FD1;&#x7684;&#x4E00;&#x4E2A;&#x4E2D;&#x5FC3;&#x7D22;&#x5F15;[0, k)</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">_closest_centroid</span><span class="hljs-params">(sample, centroids)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
sample(ndarray):&#x5355;&#x4E2A;&#x6837;&#x672C;
centroids(ndarray):k&#x4E2A;&#x7C07;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;
output:
closest_i(int):&#x6700;&#x8FD1;&#x4E2D;&#x5FC3;&#x7684;&#x7D22;&#x5F15;
&apos;&apos;&apos;</span>
distances = euclidean_distance(sample, centroids)
closest_i = np.argmin(distances)
<span class="hljs-keyword">return</span> closest_i
<span class="hljs-comment"># &#x5C06;&#x6240;&#x6709;&#x6837;&#x672C;&#x8FDB;&#x884C;&#x5F52;&#x7C7B;&#xFF0C;&#x5F52;&#x7C7B;&#x89C4;&#x5219;&#x5C31;&#x662F;&#x5C06;&#x8BE5;&#x6837;&#x672C;&#x5F52;&#x7C7B;&#x5230;&#x4E0E;&#x5176;&#x6700;&#x8FD1;&#x7684;&#x4E2D;&#x5FC3;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">create_clusters</span><span class="hljs-params">(k,centroids, X)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
k(int):&#x805A;&#x7C7B;&#x7C07;&#x7684;&#x4E2A;&#x6570;
centroids(ndarray):k&#x4E2A;&#x7C07;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
output:
clusters(list):&#x5217;&#x8868;&#x4E2D;&#x6709;k&#x4E2A;&#x5143;&#x7D20;&#xFF0C;&#x6BCF;&#x4E2A;&#x5143;&#x7D20;&#x4FDD;&#x5B58;&#x76F8;&#x540C;&#x7C07;&#x7684;&#x6837;&#x672C;&#x7684;&#x7D22;&#x5F15;
&apos;&apos;&apos;</span>
clusters = [[] <span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(k)]
<span class="hljs-keyword">for</span> sample_i, sample <span class="hljs-keyword">in</span> enumerate(X):
centroid_i = _closest_centroid(sample, centroids)
clusters[centroid_i].append(sample_i)
<span class="hljs-keyword">return</span> clusters
<span class="hljs-comment"># &#x5BF9;&#x4E2D;&#x5FC3;&#x8FDB;&#x884C;&#x66F4;&#x65B0;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">update_centroids</span><span class="hljs-params">(k,clusters, X)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
k(int):&#x805A;&#x7C7B;&#x7C07;&#x7684;&#x4E2A;&#x6570;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
output:
centroids(ndarray):k&#x4E2A;&#x7C07;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;
&apos;&apos;&apos;</span>
n_features = np.shape(X)[<span class="hljs-number">1</span>]
centroids = np.zeros((k, n_features))
<span class="hljs-keyword">for</span> i, cluster <span class="hljs-keyword">in</span> enumerate(clusters):
centroid = np.mean(X[cluster], axis=<span class="hljs-number">0</span>)
centroids[i] = centroid
<span class="hljs-keyword">return</span> centroids
<span class="hljs-comment"># &#x5C06;&#x6240;&#x6709;&#x6837;&#x672C;&#x8FDB;&#x884C;&#x5F52;&#x7C7B;&#xFF0C;&#x5176;&#x6240;&#x5728;&#x7684;&#x7C7B;&#x522B;&#x7684;&#x7D22;&#x5F15;&#x5C31;&#x662F;&#x5176;&#x7C7B;&#x522B;&#x6807;&#x7B7E;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">get_cluster_labels</span><span class="hljs-params">(clusters, X)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
clusters(list):&#x5217;&#x8868;&#x4E2D;&#x6709;k&#x4E2A;&#x5143;&#x7D20;&#xFF0C;&#x6BCF;&#x4E2A;&#x5143;&#x7D20;&#x4FDD;&#x5B58;&#x76F8;&#x540C;&#x7C07;&#x7684;&#x6837;&#x672C;&#x7684;&#x7D22;&#x5F15;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
output:
y_pred(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;&#x7684;&#x7C7B;&#x522B;&#x6807;&#x7B7E;
&apos;&apos;&apos;</span>
y_pred = np.zeros(np.shape(X)[<span class="hljs-number">0</span>])
<span class="hljs-keyword">for</span> cluster_i, cluster <span class="hljs-keyword">in</span> enumerate(clusters):
<span class="hljs-keyword">for</span> sample_i <span class="hljs-keyword">in</span> cluster:
y_pred[sample_i] = cluster_i
<span class="hljs-keyword">return</span> y_pred
<span class="hljs-comment"># &#x5BF9;&#x6574;&#x4E2A;&#x6570;&#x636E;&#x96C6;X&#x8FDB;&#x884C;Kmeans&#x805A;&#x7C7B;&#xFF0C;&#x8FD4;&#x56DE;&#x5176;&#x805A;&#x7C7B;&#x7684;&#x6807;&#x7B7E;</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">predict</span><span class="hljs-params">(k,X,max_iterations,varepsilon)</span>:</span>
<span class="hljs-string">&apos;&apos;&apos;
input:
k(int):&#x805A;&#x7C7B;&#x7C07;&#x7684;&#x4E2A;&#x6570;
X(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;
max_iterations(int):&#x6700;&#x5927;&#x8BAD;&#x7EC3;&#x8F6E;&#x6570;
varepsilon(float):&#x6700;&#x5C0F;&#x8BEF;&#x5DEE;&#x9608;&#x503C;
output:
y_pred(ndarray):&#x6240;&#x6709;&#x6837;&#x672C;&#x7684;&#x7C7B;&#x522B;&#x6807;&#x7B7E;
&apos;&apos;&apos;</span>
<span class="hljs-comment"># &#x4ECE;&#x6240;&#x6709;&#x6837;&#x672C;&#x4E2D;&#x968F;&#x673A;&#x9009;&#x53D6;k&#x6837;&#x672C;&#x4F5C;&#x4E3A;&#x521D;&#x59CB;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;</span>
centroids = init_random_centroids(k,X)
<span class="hljs-comment"># &#x8FED;&#x4EE3;&#xFF0C;&#x76F4;&#x5230;&#x7B97;&#x6CD5;&#x6536;&#x655B;(&#x4E0A;&#x4E00;&#x6B21;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;&#x548C;&#x8FD9;&#x4E00;&#x6B21;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;&#x51E0;&#x4E4E;&#x91CD;&#x5408;)&#x6216;&#x8005;&#x8FBE;&#x5230;&#x6700;&#x5927;&#x8FED;&#x4EE3;&#x6B21;&#x6570;</span>
<span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(max_iterations):
<span class="hljs-comment"># &#x5C06;&#x6240;&#x6709;&#x8FDB;&#x884C;&#x5F52;&#x7C7B;&#xFF0C;&#x5F52;&#x7C7B;&#x89C4;&#x5219;&#x5C31;&#x662F;&#x5C06;&#x8BE5;&#x6837;&#x672C;&#x5F52;&#x7C7B;&#x5230;&#x4E0E;&#x5176;&#x6700;&#x8FD1;&#x7684;&#x4E2D;&#x5FC3;</span>
clusters = create_clusters(k,centroids, X)
former_centroids = centroids
<span class="hljs-comment"># &#x8BA1;&#x7B97;&#x65B0;&#x7684;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;</span>
centroids = update_centroids(k,clusters, X)
<span class="hljs-comment"># &#x5982;&#x679C;&#x805A;&#x7C7B;&#x4E2D;&#x5FC3;&#x51E0;&#x4E4E;&#x6CA1;&#x6709;&#x53D8;&#x5316;&#xFF0C;&#x8BF4;&#x660E;&#x7B97;&#x6CD5;&#x5DF2;&#x7ECF;&#x6536;&#x655B;&#xFF0C;&#x9000;&#x51FA;&#x8FED;&#x4EE3;</span>
diff = centroids - former_centroids
<span class="hljs-keyword">if</span> diff.any() &lt; varepsilon:
<span class="hljs-keyword">break</span>
y_pred = get_cluster_labels(clusters, X)
<span class="hljs-keyword">return</span> y_pred
</code></pre>
</section>
</div>
<div class="search-results">
<div class="has-results">
<h1 class="search-results-title"><span class='search-results-count'></span> results matching "<span class='search-query'></span>"</h1>
<ul class="search-results-list"></ul>
</div>
<div class="no-results">
<h1 class="search-results-title">No results matching "<span class='search-query'></span>"</h1>
</div>
</div>
</div>
</div>
</div>
</div>
<a href="k-均值算法流程.html" class="navigation navigation-prev " aria-label="Previous page: 7.3:k-均值算法流程">
<i class="fa fa-angle-left"></i>
</a>
<a href="实战案例.html" class="navigation navigation-next " aria-label="Next page: 7.5:实战案例">
<i class="fa fa-angle-right"></i>
</a>
</div>
<script>
var gitbook = gitbook || [];
gitbook.push(function() {
gitbook.page.hasChanged({"page":{"title":"7.4:动手实现k-均值","level":"1.8.4","depth":2,"next":{"title":"7.5:实战案例","level":"1.8.5","depth":2,"path":"Chapter7/实战案例.md","ref":"Chapter7/实战案例.md","articles":[]},"previous":{"title":"7.3:k-均值算法流程","level":"1.8.3","depth":2,"path":"Chapter7/k-均值算法流程.md","ref":"Chapter7/k-均值算法流程.md","articles":[]},"dir":"ltr"},"config":{"gitbook":"*","theme":"default","variables":{},"plugins":["fontsettings","sharing","lunr","search","highlight","livereload","katex","livereload"],"pluginsConfig":{"fontsettings":{"family":"sans","size":2,"theme":"white"},"sharing":{"all":["facebook","google","twitter","weibo","instapaper"],"facebook":true,"google":false,"instapaper":false,"twitter":true,"vk":false,"weibo":false},"lunr":{"ignoreSpecialCharacters":false,"maxIndexSize":1000000},"search":{},"highlight":{},"livereload":{},"katex":{},"theme-default":{"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"},"showLevel":false}},"structure":{"langs":"LANGS.md","readme":"README.md","glossary":"GLOSSARY.md","summary":"SUMMARY.md"},"pdf":{"pageNumbers":true,"fontSize":12,"fontFamily":"Arial","paperSize":"a4","chapterMark":"pagebreak","pageBreaksBefore":"/","margin":{"right":62,"left":62,"top":56,"bottom":56}},"styles":{"website":"styles/website.css","pdf":"styles/pdf.css","epub":"styles/epub.css","mobi":"styles/mobi.css","ebook":"styles/ebook.css","print":"styles/print.css"}},"file":{"path":"Chapter7/动手实现k-均值.md","mtime":"2019-06-28T02:16:42.670Z","type":"markdown"},"gitbook":{"version":"3.2.3","time":"2019-07-08T09:03:41.806Z"},"basePath":"..","book":{"language":""}});
});
</script>
</div>
<script src="../gitbook/gitbook.js"></script>
<script src="../gitbook/theme.js"></script>
<script src="../gitbook/gitbook-plugin-fontsettings/fontsettings.js"></script>
<script src="../gitbook/gitbook-plugin-sharing/buttons.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/lunr.min.js"></script>
<script src="../gitbook/gitbook-plugin-lunr/search-lunr.js"></script>
<script src="../gitbook/gitbook-plugin-search/search-engine.js"></script>
<script src="../gitbook/gitbook-plugin-search/search.js"></script>
<script src="../gitbook/gitbook-plugin-livereload/plugin.js"></script>
</body>
</html>