#pragma once #include #include "drake/math/gradient.h" #include "drake/math/gradient_util.h" namespace drake { namespace math { /** Computes the normalized vector, optionally with its gradient and second derivative. @param[in] x An N x 1 vector to be normalized. Must not be zero. @param[out] x_norm The normalized vector (N x 1). @param[out] dx_norm If non-null, returned as an N x N matrix, where dx_norm(i,j) = D x_norm(i)/D x(j). @param[out] ddx_norm If non-null, and dx_norm is non-null, returned as an N^2 x N matrix, where ddx_norm.col(j) = D dx_norm/D x(j), with dx_norm stacked columnwise. (D x / D y above means partial derivative of x with respect to y.) */ template void NormalizeVector( const Eigen::MatrixBase& x, // TODO(#2274) Fix NOLINTNEXTLINE(runtime/references). typename Derived::PlainObject& x_norm, typename drake::math::Gradient::type* dx_norm = nullptr, typename drake::math::Gradient::type* ddx_norm = nullptr) { typename Derived::Scalar xdotx = x.squaredNorm(); typename Derived::Scalar norm_x = sqrt(xdotx); x_norm = x / norm_x; if (dx_norm) { dx_norm->setIdentity(x.rows(), x.rows()); (*dx_norm) -= x * x.transpose() / xdotx; (*dx_norm) /= norm_x; if (ddx_norm) { auto dx_norm_transpose = transposeGrad(*dx_norm, x.rows()); auto minus_ddx_norm_times_norm = matGradMultMat( x_norm, x_norm.transpose(), (*dx_norm), dx_norm_transpose); auto dnorm_inv = -x.transpose() / (xdotx * norm_x); (*ddx_norm) = -minus_ddx_norm_times_norm / norm_x; auto temp = (*dx_norm) * norm_x; typename Derived::Index n = x.rows(); for (int col = 0; col < n; col++) { auto column_as_matrix = (dnorm_inv(0, col) * temp); for (int row_block = 0; row_block < n; row_block++) { ddx_norm->block(row_block * n, col, n, 1) += column_as_matrix.col(row_block); } } } } } } // namespace math } // namespace drake