|
|
#include <iostream>
|
|
|
#include <vector>
|
|
|
#include <cmath>
|
|
|
#include <algorithm>
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
// 坐标类
|
|
|
class Point {
|
|
|
public:
|
|
|
double x, y;
|
|
|
Point(double nx, double ny) : x(nx), y(ny) {}
|
|
|
};
|
|
|
|
|
|
// 图类
|
|
|
class Graph {
|
|
|
public:
|
|
|
Graph(vector<Point> points) {
|
|
|
for (int i = 0; i < points.size(); i++) {
|
|
|
vector<double> row;
|
|
|
for (int j = 0; j < points.size(); j++) {
|
|
|
if (i == j) {
|
|
|
row.push_back(0);
|
|
|
} else {
|
|
|
double dis = sqrt(pow(points[i].x - points[j].x, 2) + pow(points[i].y - points[j].y, 2));
|
|
|
row.push_back(dis);
|
|
|
}
|
|
|
}
|
|
|
matrix.push_back(row);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Dijkstra算法求解最短路径,网上嫖的
|
|
|
vector<Point> get_shortest_path(int start_index, int end_index) {
|
|
|
int node_num = matrix.size();
|
|
|
vector<bool> visited(node_num, false);
|
|
|
vector<int> prev(node_num, -1);
|
|
|
vector<double> dist(node_num, INFINITY);
|
|
|
dist[start_index] = 0;
|
|
|
|
|
|
// Dijkstra算法
|
|
|
for (int i = 0; i < node_num; i++) {
|
|
|
int u = -1;
|
|
|
double min_dist = INFINITY;
|
|
|
// 找到未访问过的距离最小的节点u
|
|
|
for (int j = 0; j < node_num; j++) {
|
|
|
if (!visited[j] && dist[j] < min_dist) {
|
|
|
u = j;
|
|
|
min_dist = dist[j];
|
|
|
}
|
|
|
}
|
|
|
if (u == -1) break;
|
|
|
visited[u] = true;
|
|
|
// 更新u的邻接节点v的距离和前驱
|
|
|
for (int v = 0; v < node_num; v++) {
|
|
|
if (!visited[v] && matrix[u][v] < INFINITY) {
|
|
|
double new_dist = dist[u] + matrix[u][v];
|
|
|
if (new_dist < dist[v]) {
|
|
|
dist[v] = new_dist;
|
|
|
prev[v] = u;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// 输出最短路径
|
|
|
vector<Point> path;
|
|
|
int u = end_index;
|
|
|
while (prev[u] != -1) {
|
|
|
path.push_back(points[u]);
|
|
|
u = prev[u];
|
|
|
}
|
|
|
reverse(path.begin(), path.end());
|
|
|
|
|
|
return path;
|
|
|
}
|
|
|
|
|
|
private:
|
|
|
vector<vector<double>> matrix; // 邻接矩阵,用来存放
|
|
|
vector<Point> points; // 顶点坐标列表
|
|
|
const double INFINITY = std::numeric_limits<double>::infinity(); // 无穷大
|
|
|
};
|
|
|
|
|
|
// 顶点序列类
|
|
|
class VertexSequence {
|
|
|
public:
|
|
|
// 构造函数
|
|
|
VertexSequence(vector<Point> points, Graph graph) {
|
|
|
this->points = points;
|
|
|
this->graph = graph;
|
|
|
start_index = 0; // 初始起点为第一个点
|
|
|
end_index = -1; // 结尾没有定义
|
|
|
sequence = graph.get_shortest_path(start_index, end_index); // 计算最短路径
|
|
|
}
|
|
|
|
|
|
// 重新排序方法
|
|
|
void sort(Point current_point) {
|
|
|
// 计算起点到各顶点的距离
|
|
|
vector<double> distances;
|
|
|
for (int i = 0; i < sequence.size(); i++) {
|
|
|
double dis = sqrt(pow(current_point.x - sequence[i].x, 2) + pow(current_point.y - sequence[i].y, 2));
|
|
|
distances.push_back(dis);
|
|
|
}
|
|
|
// 对顶点序列进行重新排序
|
|
|
sort(sequence.begin(), sequence.end(), [&distances](const Point& lhs, const Point& rhs) {
|
|
|
int index_lhs = &lhs - &distances[0];
|
|
|
int index_rhs = &rhs - &distances[0];
|
|
|
return distances[index_lhs] < distances[index_rhs];
|
|
|
});
|
|
|
}
|
|
|
|
|
|
Point pop() {
|
|
|
Point next_point = sequence.front();
|
|
|
sequence.erase(sequence.begin());
|
|
|
return next_point;
|
|
|
}
|
|
|
|
|
|
private:
|
|
|
vector<Point> points; // 顶点坐标
|
|
|
Graph graph; // 连通图
|
|
|
int start_index; // 起点
|
|
|
int end_index; // 结尾
|
|
|
vector<Point> sequence; // 顶点序列
|
|
|
};
|