diff --git a/src/Yolo/.gitignore b/src/Yolo/.gitignore
new file mode 100644
index 0000000..be9867e
--- /dev/null
+++ b/src/Yolo/.gitignore
@@ -0,0 +1,86 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+build/
+dist/
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+.Pipfile.lock
+
+runs/
\ No newline at end of file
diff --git a/src/Yolo/AIDetector_pytorch.py b/src/Yolo/AIDetector_pytorch.py
new file mode 100644
index 0000000..08fd23a
--- /dev/null
+++ b/src/Yolo/AIDetector_pytorch.py
@@ -0,0 +1,67 @@
+import torch
+import numpy as np
+from models.experimental import attempt_load
+from utils.general import non_max_suppression, scale_coords
+from utils.BaseDetector import baseDet
+from utils.torch_utils import select_device
+from utils.datasets import letterbox
+
+class Detector(baseDet):
+
+ def __init__(self):
+ super(Detector, self).__init__()
+ self.init_model()
+ self.build_config()
+
+ def init_model(self):
+
+ self.weights = 'weights/yolov5s.pt'
+ self.device = '0' if torch.cuda.is_available() else 'cpu'
+ self.device = select_device(self.device)
+ model = attempt_load(self.weights, map_location=self.device)
+ model.to(self.device).eval()
+ model.float()
+ # torch.save(model, 'test.pt')
+ self.m = model
+ self.names = model.module.names if hasattr(
+ model, 'module') else model.names
+
+ def preprocess(self, img):
+
+ img0 = img.copy()
+ img = letterbox(img, new_shape=self.img_size)[0]
+ img = img[:, :, ::-1].transpose(2, 0, 1)
+ img = np.ascontiguousarray(img)
+ img = torch.from_numpy(img).to(self.device)
+ img = img.half() # 半精度
+ img /= 255.0 # 图像归一化
+ if img.ndimension() == 3:
+ img = img.unsqueeze(0)
+
+ return img0, img
+
+ def detect(self, im):
+
+ im0, img = self.preprocess(im)
+ pred = self.m(img.float(), augment=False)[0]
+ pred = pred.float()
+ pred = non_max_suppression(pred, self.threshold, 0.4)
+
+ pred_boxes = []
+ for det in pred:
+
+ if det is not None and len(det):
+ det[:, :4] = scale_coords(
+ img.shape[2:], det[:, :4], im0.shape).round()
+
+ for *x, conf, cls_id in det:
+ lbl = self.names[int(cls_id)]
+ if not lbl in ['person', 'car', 'truck']:
+ continue
+ x1, y1 = int(x[0]), int(x[1])
+ x2, y2 = int(x[2]), int(x[3])
+ pred_boxes.append(
+ (x1, y1, x2, y2, lbl, conf))
+
+ return im, pred_boxes
+
diff --git a/src/Yolo/LICENSE b/src/Yolo/LICENSE
new file mode 100644
index 0000000..9e419e0
--- /dev/null
+++ b/src/Yolo/LICENSE
@@ -0,0 +1,674 @@
+GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
\ No newline at end of file
diff --git a/src/Yolo/README.md b/src/Yolo/README.md
new file mode 100644
index 0000000..e0a1c3a
--- /dev/null
+++ b/src/Yolo/README.md
@@ -0,0 +1,148 @@
+# 本文禁止转载!
+
+本文地址:[https://blog.csdn.net/weixin_44936889/article/details/112002152](https://blog.csdn.net/weixin_44936889/article/details/112002152)
+
+# 项目简介:
+
+使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。
+
+代码地址(欢迎star):
+
+[https://github.com/Sharpiless/yolov5-deepsort/](https://github.com/Sharpiless/yolov5-deepsort/)
+
+最终效果:
+
+
+# YOLOv5检测器:
+
+```python
+class Detector(baseDet):
+
+ def __init__(self):
+ super(Detector, self).__init__()
+ self.init_model()
+ self.build_config()
+
+ def init_model(self):
+
+ self.weights = 'weights/yolov5m.pt'
+ self.device = '0' if torch.cuda.is_available() else 'cpu'
+ self.device = select_device(self.device)
+ model = attempt_load(self.weights, map_location=self.device)
+ model.to(self.device).eval()
+ model.half()
+ # torch.save(model, 'test.pt')
+ self.m = model
+ self.names = model.module.names if hasattr(
+ model, 'module') else model.names
+
+ def preprocess(self, img):
+
+ img0 = img.copy()
+ img = letterbox(img, new_shape=self.img_size)[0]
+ img = img[:, :, ::-1].transpose(2, 0, 1)
+ img = np.ascontiguousarray(img)
+ img = torch.from_numpy(img).to(self.device)
+ img = img.half() # 半精度
+ img /= 255.0 # 图像归一化
+ if img.ndimension() == 3:
+ img = img.unsqueeze(0)
+
+ return img0, img
+
+ def detect(self, im):
+
+ im0, img = self.preprocess(im)
+
+ pred = self.m(img, augment=False)[0]
+ pred = pred.float()
+ pred = non_max_suppression(pred, self.threshold, 0.4)
+
+ pred_boxes = []
+ for det in pred:
+
+ if det is not None and len(det):
+ det[:, :4] = scale_coords(
+ img.shape[2:], det[:, :4], im0.shape).round()
+
+ for *x, conf, cls_id in det:
+ lbl = self.names[int(cls_id)]
+ if not lbl in ['person', 'car', 'truck']:
+ continue
+ x1, y1 = int(x[0]), int(x[1])
+ x2, y2 = int(x[2]), int(x[3])
+ pred_boxes.append(
+ (x1, y1, x2, y2, lbl, conf))
+
+ return im, pred_boxes
+
+```
+
+调用 self.detect 方法返回图像和预测结果
+
+# DeepSort追踪器:
+
+```python
+deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
+ max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
+ nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
+ max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
+ use_cuda=True)
+```
+
+调用 self.update 方法更新追踪结果
+
+# 环境配置
+
+```
+conda conda create -n deepsort python=3.9
+conda activate deepsort
+pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
+```
+
+# 运行demo:
+
+```bash
+python demo.py # 调用摄像头
+python demo.py [video_file_path] # 读取视频文件
+```
+
+# 训练自己的模型:
+
+参考我的另一篇博客:
+
+[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862)
+
+训练好后放到 weights 文件夹下
+
+# 调用接口:
+
+## 创建检测器:
+
+```python
+from AIDetector_pytorch import Detector
+
+det = Detector()
+```
+
+## 调用检测接口:
+
+```python
+result = det.feedCap(im)
+```
+
+其中 im 为 BGR 图像
+
+返回的 result 是字典,result['frame'] 返回可视化后的图像
+
+# 联系作者:
+
+> B站:[https://space.bilibili.com/470550823](https://space.bilibili.com/470550823)
+
+> CSDN:[https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889)
+
+> AI Studio:[https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156)
+
+> Github:[https://github.com/Sharpiless](https://github.com/Sharpiless)
+
+遵循 GNU General Public License v3.0 协议,标明目标检测部分来源:https://github.com/ultralytics/yolov5/
diff --git a/src/Yolo/deep_sort/configs/deep_sort.yaml b/src/Yolo/deep_sort/configs/deep_sort.yaml
new file mode 100644
index 0000000..6105f46
--- /dev/null
+++ b/src/Yolo/deep_sort/configs/deep_sort.yaml
@@ -0,0 +1,10 @@
+DEEPSORT:
+ REID_CKPT: "deep_sort/deep_sort/deep/checkpoint/ckpt.t7"
+ MAX_DIST: 0.2
+ MIN_CONFIDENCE: 0.3
+ NMS_MAX_OVERLAP: 0.5
+ MAX_IOU_DISTANCE: 0.7
+ MAX_AGE: 70
+ N_INIT: 3
+ NN_BUDGET: 100
+
diff --git a/src/Yolo/deep_sort/deep_sort/README.md b/src/Yolo/deep_sort/deep_sort/README.md
new file mode 100644
index 0000000..e89c9b3
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/README.md
@@ -0,0 +1,3 @@
+# Deep Sort
+
+This is the implemention of deep sort with pytorch.
\ No newline at end of file
diff --git a/src/Yolo/deep_sort/deep_sort/__init__.py b/src/Yolo/deep_sort/deep_sort/__init__.py
new file mode 100644
index 0000000..5fe5d0f
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/__init__.py
@@ -0,0 +1,21 @@
+from .deep_sort import DeepSort
+
+
+__all__ = ['DeepSort', 'build_tracker']
+
+
+def build_tracker(cfg, use_cuda):
+ return DeepSort(cfg.DEEPSORT.REID_CKPT,
+ max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
+ nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
+ max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=use_cuda)
+
+
+
+
+
+
+
+
+
+
diff --git a/src/Yolo/deep_sort/deep_sort/deep/__init__.py b/src/Yolo/deep_sort/deep_sort/deep/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/deep_sort/deep_sort/deep/checkpoint/.gitkeep b/src/Yolo/deep_sort/deep_sort/deep/checkpoint/.gitkeep
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/deep_sort/deep_sort/deep/checkpoint/ckpt.t7 b/src/Yolo/deep_sort/deep_sort/deep/checkpoint/ckpt.t7
new file mode 100644
index 0000000..d253aae
Binary files /dev/null and b/src/Yolo/deep_sort/deep_sort/deep/checkpoint/ckpt.t7 differ
diff --git a/src/Yolo/deep_sort/deep_sort/deep/evaluate.py b/src/Yolo/deep_sort/deep_sort/deep/evaluate.py
new file mode 100644
index 0000000..31c40a4
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/evaluate.py
@@ -0,0 +1,15 @@
+import torch
+
+features = torch.load("features.pth")
+qf = features["qf"]
+ql = features["ql"]
+gf = features["gf"]
+gl = features["gl"]
+
+scores = qf.mm(gf.t())
+res = scores.topk(5, dim=1)[1][:,0]
+top1correct = gl[res].eq(ql).sum().item()
+
+print("Acc top1:{:.3f}".format(top1correct/ql.size(0)))
+
+
diff --git a/src/Yolo/deep_sort/deep_sort/deep/feature_extractor.py b/src/Yolo/deep_sort/deep_sort/deep/feature_extractor.py
new file mode 100644
index 0000000..0443e37
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/feature_extractor.py
@@ -0,0 +1,55 @@
+import torch
+import torchvision.transforms as transforms
+import numpy as np
+import cv2
+import logging
+
+from .model import Net
+
+class Extractor(object):
+ def __init__(self, model_path, use_cuda=True):
+ self.net = Net(reid=True)
+ self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
+ state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)['net_dict']
+ self.net.load_state_dict(state_dict)
+ logger = logging.getLogger("root.tracker")
+ logger.info("Loading weights from {}... Done!".format(model_path))
+ self.net.to(self.device)
+ self.size = (64, 128)
+ self.norm = transforms.Compose([
+ transforms.ToTensor(),
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ])
+
+
+
+ def _preprocess(self, im_crops):
+ """
+ TODO:
+ 1. to float with scale from 0 to 1
+ 2. resize to (64, 128) as Market1501 dataset did
+ 3. concatenate to a numpy array
+ 3. to torch Tensor
+ 4. normalize
+ """
+ def _resize(im, size):
+ return cv2.resize(im.astype(np.float32)/255., size)
+
+ im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()
+ return im_batch
+
+
+ def __call__(self, im_crops):
+ im_batch = self._preprocess(im_crops)
+ with torch.no_grad():
+ im_batch = im_batch.to(self.device)
+ features = self.net(im_batch)
+ return features.cpu().numpy()
+
+
+if __name__ == '__main__':
+ img = cv2.imread("demo.jpg")[:,:,(2,1,0)]
+ extr = Extractor("checkpoint/ckpt.t7")
+ feature = extr(img)
+ print(feature.shape)
+
diff --git a/src/Yolo/deep_sort/deep_sort/deep/model.py b/src/Yolo/deep_sort/deep_sort/deep/model.py
new file mode 100644
index 0000000..97e8754
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/model.py
@@ -0,0 +1,104 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+class BasicBlock(nn.Module):
+ def __init__(self, c_in, c_out,is_downsample=False):
+ super(BasicBlock,self).__init__()
+ self.is_downsample = is_downsample
+ if is_downsample:
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False)
+ else:
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)
+ self.bn1 = nn.BatchNorm2d(c_out)
+ self.relu = nn.ReLU(True)
+ self.conv2 = nn.Conv2d(c_out,c_out,3,stride=1,padding=1, bias=False)
+ self.bn2 = nn.BatchNorm2d(c_out)
+ if is_downsample:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
+ nn.BatchNorm2d(c_out)
+ )
+ elif c_in != c_out:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
+ nn.BatchNorm2d(c_out)
+ )
+ self.is_downsample = True
+
+ def forward(self,x):
+ y = self.conv1(x)
+ y = self.bn1(y)
+ y = self.relu(y)
+ y = self.conv2(y)
+ y = self.bn2(y)
+ if self.is_downsample:
+ x = self.downsample(x)
+ return F.relu(x.add(y),True)
+
+def make_layers(c_in,c_out,repeat_times, is_downsample=False):
+ blocks = []
+ for i in range(repeat_times):
+ if i ==0:
+ blocks += [BasicBlock(c_in,c_out, is_downsample=is_downsample),]
+ else:
+ blocks += [BasicBlock(c_out,c_out),]
+ return nn.Sequential(*blocks)
+
+class Net(nn.Module):
+ def __init__(self, num_classes=751 ,reid=False):
+ super(Net,self).__init__()
+ # 3 128 64
+ self.conv = nn.Sequential(
+ nn.Conv2d(3,64,3,stride=1,padding=1),
+ nn.BatchNorm2d(64),
+ nn.ReLU(inplace=True),
+ # nn.Conv2d(32,32,3,stride=1,padding=1),
+ # nn.BatchNorm2d(32),
+ # nn.ReLU(inplace=True),
+ nn.MaxPool2d(3,2,padding=1),
+ )
+ # 32 64 32
+ self.layer1 = make_layers(64,64,2,False)
+ # 32 64 32
+ self.layer2 = make_layers(64,128,2,True)
+ # 64 32 16
+ self.layer3 = make_layers(128,256,2,True)
+ # 128 16 8
+ self.layer4 = make_layers(256,512,2,True)
+ # 256 8 4
+ self.avgpool = nn.AvgPool2d((8,4),1)
+ # 256 1 1
+ self.reid = reid
+ self.classifier = nn.Sequential(
+ nn.Linear(512, 256),
+ nn.BatchNorm1d(256),
+ nn.ReLU(inplace=True),
+ nn.Dropout(),
+ nn.Linear(256, num_classes),
+ )
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.layer1(x)
+ x = self.layer2(x)
+ x = self.layer3(x)
+ x = self.layer4(x)
+ x = self.avgpool(x)
+ x = x.view(x.size(0),-1)
+ # B x 128
+ if self.reid:
+ x = x.div(x.norm(p=2,dim=1,keepdim=True))
+ return x
+ # classifier
+ x = self.classifier(x)
+ return x
+
+
+if __name__ == '__main__':
+ net = Net()
+ x = torch.randn(4,3,128,64)
+ y = net(x)
+ import ipdb; ipdb.set_trace()
+
+
diff --git a/src/Yolo/deep_sort/deep_sort/deep/original_model.py b/src/Yolo/deep_sort/deep_sort/deep/original_model.py
new file mode 100644
index 0000000..72453a6
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/original_model.py
@@ -0,0 +1,106 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+class BasicBlock(nn.Module):
+ def __init__(self, c_in, c_out,is_downsample=False):
+ super(BasicBlock,self).__init__()
+ self.is_downsample = is_downsample
+ if is_downsample:
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False)
+ else:
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)
+ self.bn1 = nn.BatchNorm2d(c_out)
+ self.relu = nn.ReLU(True)
+ self.conv2 = nn.Conv2d(c_out,c_out,3,stride=1,padding=1, bias=False)
+ self.bn2 = nn.BatchNorm2d(c_out)
+ if is_downsample:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
+ nn.BatchNorm2d(c_out)
+ )
+ elif c_in != c_out:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
+ nn.BatchNorm2d(c_out)
+ )
+ self.is_downsample = True
+
+ def forward(self,x):
+ y = self.conv1(x)
+ y = self.bn1(y)
+ y = self.relu(y)
+ y = self.conv2(y)
+ y = self.bn2(y)
+ if self.is_downsample:
+ x = self.downsample(x)
+ return F.relu(x.add(y),True)
+
+def make_layers(c_in,c_out,repeat_times, is_downsample=False):
+ blocks = []
+ for i in range(repeat_times):
+ if i ==0:
+ blocks += [BasicBlock(c_in,c_out, is_downsample=is_downsample),]
+ else:
+ blocks += [BasicBlock(c_out,c_out),]
+ return nn.Sequential(*blocks)
+
+class Net(nn.Module):
+ def __init__(self, num_classes=625 ,reid=False):
+ super(Net,self).__init__()
+ # 3 128 64
+ self.conv = nn.Sequential(
+ nn.Conv2d(3,32,3,stride=1,padding=1),
+ nn.BatchNorm2d(32),
+ nn.ELU(inplace=True),
+ nn.Conv2d(32,32,3,stride=1,padding=1),
+ nn.BatchNorm2d(32),
+ nn.ELU(inplace=True),
+ nn.MaxPool2d(3,2,padding=1),
+ )
+ # 32 64 32
+ self.layer1 = make_layers(32,32,2,False)
+ # 32 64 32
+ self.layer2 = make_layers(32,64,2,True)
+ # 64 32 16
+ self.layer3 = make_layers(64,128,2,True)
+ # 128 16 8
+ self.dense = nn.Sequential(
+ nn.Dropout(p=0.6),
+ nn.Linear(128*16*8, 128),
+ nn.BatchNorm1d(128),
+ nn.ELU(inplace=True)
+ )
+ # 256 1 1
+ self.reid = reid
+ self.batch_norm = nn.BatchNorm1d(128)
+ self.classifier = nn.Sequential(
+ nn.Linear(128, num_classes),
+ )
+
+ def forward(self, x):
+ x = self.conv(x)
+ x = self.layer1(x)
+ x = self.layer2(x)
+ x = self.layer3(x)
+
+ x = x.view(x.size(0),-1)
+ if self.reid:
+ x = self.dense[0](x)
+ x = self.dense[1](x)
+ x = x.div(x.norm(p=2,dim=1,keepdim=True))
+ return x
+ x = self.dense(x)
+ # B x 128
+ # classifier
+ x = self.classifier(x)
+ return x
+
+
+if __name__ == '__main__':
+ net = Net(reid=True)
+ x = torch.randn(4,3,128,64)
+ y = net(x)
+ import ipdb; ipdb.set_trace()
+
+
diff --git a/src/Yolo/deep_sort/deep_sort/deep/test.py b/src/Yolo/deep_sort/deep_sort/deep/test.py
new file mode 100644
index 0000000..ebd5903
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/test.py
@@ -0,0 +1,77 @@
+import torch
+import torch.backends.cudnn as cudnn
+import torchvision
+
+import argparse
+import os
+
+from model import Net
+
+parser = argparse.ArgumentParser(description="Train on market1501")
+parser.add_argument("--data-dir",default='data',type=str)
+parser.add_argument("--no-cuda",action="store_true")
+parser.add_argument("--gpu-id",default=0,type=int)
+args = parser.parse_args()
+
+# device
+device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
+if torch.cuda.is_available() and not args.no_cuda:
+ cudnn.benchmark = True
+
+# data loader
+root = args.data_dir
+query_dir = os.path.join(root,"query")
+gallery_dir = os.path.join(root,"gallery")
+transform = torchvision.transforms.Compose([
+ torchvision.transforms.Resize((128,64)),
+ torchvision.transforms.ToTensor(),
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
+])
+queryloader = torch.utils.data.DataLoader(
+ torchvision.datasets.ImageFolder(query_dir, transform=transform),
+ batch_size=64, shuffle=False
+)
+galleryloader = torch.utils.data.DataLoader(
+ torchvision.datasets.ImageFolder(gallery_dir, transform=transform),
+ batch_size=64, shuffle=False
+)
+
+# net definition
+net = Net(reid=True)
+assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
+print('Loading from checkpoint/ckpt.t7')
+checkpoint = torch.load("./checkpoint/ckpt.t7")
+net_dict = checkpoint['net_dict']
+net.load_state_dict(net_dict, strict=False)
+net.eval()
+net.to(device)
+
+# compute features
+query_features = torch.tensor([]).float()
+query_labels = torch.tensor([]).long()
+gallery_features = torch.tensor([]).float()
+gallery_labels = torch.tensor([]).long()
+
+with torch.no_grad():
+ for idx,(inputs,labels) in enumerate(queryloader):
+ inputs = inputs.to(device)
+ features = net(inputs).cpu()
+ query_features = torch.cat((query_features, features), dim=0)
+ query_labels = torch.cat((query_labels, labels))
+
+ for idx,(inputs,labels) in enumerate(galleryloader):
+ inputs = inputs.to(device)
+ features = net(inputs).cpu()
+ gallery_features = torch.cat((gallery_features, features), dim=0)
+ gallery_labels = torch.cat((gallery_labels, labels))
+
+gallery_labels -= 2
+
+# save features
+features = {
+ "qf": query_features,
+ "ql": query_labels,
+ "gf": gallery_features,
+ "gl": gallery_labels
+}
+torch.save(features,"features.pth")
\ No newline at end of file
diff --git a/src/Yolo/deep_sort/deep_sort/deep/train.jpg b/src/Yolo/deep_sort/deep_sort/deep/train.jpg
new file mode 100644
index 0000000..3635a61
Binary files /dev/null and b/src/Yolo/deep_sort/deep_sort/deep/train.jpg differ
diff --git a/src/Yolo/deep_sort/deep_sort/deep/train.py b/src/Yolo/deep_sort/deep_sort/deep/train.py
new file mode 100644
index 0000000..a931763
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep/train.py
@@ -0,0 +1,189 @@
+import argparse
+import os
+import time
+
+import numpy as np
+import matplotlib.pyplot as plt
+import torch
+import torch.backends.cudnn as cudnn
+import torchvision
+
+from model import Net
+
+parser = argparse.ArgumentParser(description="Train on market1501")
+parser.add_argument("--data-dir",default='data',type=str)
+parser.add_argument("--no-cuda",action="store_true")
+parser.add_argument("--gpu-id",default=0,type=int)
+parser.add_argument("--lr",default=0.1, type=float)
+parser.add_argument("--interval",'-i',default=20,type=int)
+parser.add_argument('--resume', '-r',action='store_true')
+args = parser.parse_args()
+
+# device
+device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
+if torch.cuda.is_available() and not args.no_cuda:
+ cudnn.benchmark = True
+
+# data loading
+root = args.data_dir
+train_dir = os.path.join(root,"train")
+test_dir = os.path.join(root,"test")
+transform_train = torchvision.transforms.Compose([
+ torchvision.transforms.RandomCrop((128,64),padding=4),
+ torchvision.transforms.RandomHorizontalFlip(),
+ torchvision.transforms.ToTensor(),
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
+])
+transform_test = torchvision.transforms.Compose([
+ torchvision.transforms.Resize((128,64)),
+ torchvision.transforms.ToTensor(),
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
+])
+trainloader = torch.utils.data.DataLoader(
+ torchvision.datasets.ImageFolder(train_dir, transform=transform_train),
+ batch_size=64,shuffle=True
+)
+testloader = torch.utils.data.DataLoader(
+ torchvision.datasets.ImageFolder(test_dir, transform=transform_test),
+ batch_size=64,shuffle=True
+)
+num_classes = max(len(trainloader.dataset.classes), len(testloader.dataset.classes))
+
+# net definition
+start_epoch = 0
+net = Net(num_classes=num_classes)
+if args.resume:
+ assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
+ print('Loading from checkpoint/ckpt.t7')
+ checkpoint = torch.load("./checkpoint/ckpt.t7")
+ # import ipdb; ipdb.set_trace()
+ net_dict = checkpoint['net_dict']
+ net.load_state_dict(net_dict)
+ best_acc = checkpoint['acc']
+ start_epoch = checkpoint['epoch']
+net.to(device)
+
+# loss and optimizer
+criterion = torch.nn.CrossEntropyLoss()
+optimizer = torch.optim.SGD(net.parameters(), args.lr, momentum=0.9, weight_decay=5e-4)
+best_acc = 0.
+
+# train function for each epoch
+def train(epoch):
+ print("\nEpoch : %d"%(epoch+1))
+ net.train()
+ training_loss = 0.
+ train_loss = 0.
+ correct = 0
+ total = 0
+ interval = args.interval
+ start = time.time()
+ for idx, (inputs, labels) in enumerate(trainloader):
+ # forward
+ inputs,labels = inputs.to(device),labels.to(device)
+ outputs = net(inputs)
+ loss = criterion(outputs, labels)
+
+ # backward
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ # accumurating
+ training_loss += loss.item()
+ train_loss += loss.item()
+ correct += outputs.max(dim=1)[1].eq(labels).sum().item()
+ total += labels.size(0)
+
+ # print
+ if (idx+1)%interval == 0:
+ end = time.time()
+ print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
+ 100.*(idx+1)/len(trainloader), end-start, training_loss/interval, correct, total, 100.*correct/total
+ ))
+ training_loss = 0.
+ start = time.time()
+
+ return train_loss/len(trainloader), 1.- correct/total
+
+def test(epoch):
+ global best_acc
+ net.eval()
+ test_loss = 0.
+ correct = 0
+ total = 0
+ start = time.time()
+ with torch.no_grad():
+ for idx, (inputs, labels) in enumerate(testloader):
+ inputs, labels = inputs.to(device), labels.to(device)
+ outputs = net(inputs)
+ loss = criterion(outputs, labels)
+
+ test_loss += loss.item()
+ correct += outputs.max(dim=1)[1].eq(labels).sum().item()
+ total += labels.size(0)
+
+ print("Testing ...")
+ end = time.time()
+ print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
+ 100.*(idx+1)/len(testloader), end-start, test_loss/len(testloader), correct, total, 100.*correct/total
+ ))
+
+ # saving checkpoint
+ acc = 100.*correct/total
+ if acc > best_acc:
+ best_acc = acc
+ print("Saving parameters to checkpoint/ckpt.t7")
+ checkpoint = {
+ 'net_dict':net.state_dict(),
+ 'acc':acc,
+ 'epoch':epoch,
+ }
+ if not os.path.isdir('checkpoint'):
+ os.mkdir('checkpoint')
+ torch.save(checkpoint, './checkpoint/ckpt.t7')
+
+ return test_loss/len(testloader), 1.- correct/total
+
+# plot figure
+x_epoch = []
+record = {'train_loss':[], 'train_err':[], 'test_loss':[], 'test_err':[]}
+fig = plt.figure()
+ax0 = fig.add_subplot(121, title="loss")
+ax1 = fig.add_subplot(122, title="top1err")
+def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
+ global record
+ record['train_loss'].append(train_loss)
+ record['train_err'].append(train_err)
+ record['test_loss'].append(test_loss)
+ record['test_err'].append(test_err)
+
+ x_epoch.append(epoch)
+ ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
+ ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
+ ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
+ ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
+ if epoch == 0:
+ ax0.legend()
+ ax1.legend()
+ fig.savefig("train.jpg")
+
+# lr decay
+def lr_decay():
+ global optimizer
+ for params in optimizer.param_groups:
+ params['lr'] *= 0.1
+ lr = params['lr']
+ print("Learning rate adjusted to {}".format(lr))
+
+def main():
+ for epoch in range(start_epoch, start_epoch+40):
+ train_loss, train_err = train(epoch)
+ test_loss, test_err = test(epoch)
+ draw_curve(epoch, train_loss, train_err, test_loss, test_err)
+ if (epoch+1)%20==0:
+ lr_decay()
+
+
+if __name__ == '__main__':
+ main()
diff --git a/src/Yolo/deep_sort/deep_sort/deep_sort.py b/src/Yolo/deep_sort/deep_sort/deep_sort.py
new file mode 100644
index 0000000..3eadb75
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/deep_sort.py
@@ -0,0 +1,100 @@
+import numpy as np
+import torch
+
+from .deep.feature_extractor import Extractor
+from .sort.nn_matching import NearestNeighborDistanceMetric
+from .sort.preprocessing import non_max_suppression
+from .sort.detection import Detection
+from .sort.tracker import Tracker
+
+
+__all__ = ['DeepSort']
+
+
+class DeepSort(object):
+ def __init__(self, model_path, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True):
+ self.min_confidence = min_confidence
+ self.nms_max_overlap = nms_max_overlap
+
+ self.extractor = Extractor(model_path, use_cuda=use_cuda)
+
+ max_cosine_distance = max_dist
+ nn_budget = 100
+ metric = NearestNeighborDistanceMetric(
+ "cosine", max_cosine_distance, nn_budget)
+ self.tracker = Tracker(
+ metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
+
+ def update(self, bbox_xywh, confidences, clss, ori_img):
+ self.height, self.width = ori_img.shape[:2]
+ # generate detections
+ features = self._get_features(bbox_xywh, ori_img)
+ bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
+ detections = [Detection(bbox_tlwh[i], clss[i], conf, features[i]) for i, conf in enumerate(
+ confidences) if conf > self.min_confidence]
+ # update tracker
+ self.tracker.predict()
+ self.tracker.update(detections)
+
+ # output bbox identities
+ outputs = []
+ for track in self.tracker.tracks:
+ if not track.is_confirmed() or track.time_since_update > 1:
+ continue
+ box = track.to_tlwh()
+ x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
+ outputs.append((x1, y1, x2, y2, track.cls_, track.track_id))
+ return outputs
+
+ @staticmethod
+ def _xywh_to_tlwh(bbox_xywh):
+ if isinstance(bbox_xywh, np.ndarray):
+ bbox_tlwh = bbox_xywh.copy()
+ elif isinstance(bbox_xywh, torch.Tensor):
+ bbox_tlwh = bbox_xywh.clone()
+ if bbox_tlwh.size(0):
+ bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2]/2.
+ bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3]/2.
+ return bbox_tlwh
+
+ def _xywh_to_xyxy(self, bbox_xywh):
+ x, y, w, h = bbox_xywh
+ x1 = max(int(x-w/2), 0)
+ x2 = min(int(x+w/2), self.width-1)
+ y1 = max(int(y-h/2), 0)
+ y2 = min(int(y+h/2), self.height-1)
+ return x1, y1, x2, y2
+
+ def _tlwh_to_xyxy(self, bbox_tlwh):
+ """
+ TODO:
+ Convert bbox from xtl_ytl_w_h to xc_yc_w_h
+ Thanks JieChen91@github.com for reporting this bug!
+ """
+ x, y, w, h = bbox_tlwh
+ x1 = max(int(x), 0)
+ x2 = min(int(x+w), self.width-1)
+ y1 = max(int(y), 0)
+ y2 = min(int(y+h), self.height-1)
+ return x1, y1, x2, y2
+
+ def _xyxy_to_tlwh(self, bbox_xyxy):
+ x1, y1, x2, y2 = bbox_xyxy
+
+ t = x1
+ l = y1
+ w = int(x2-x1)
+ h = int(y2-y1)
+ return t, l, w, h
+
+ def _get_features(self, bbox_xywh, ori_img):
+ im_crops = []
+ for box in bbox_xywh:
+ x1, y1, x2, y2 = self._xywh_to_xyxy(box)
+ im = ori_img[y1:y2, x1:x2]
+ im_crops.append(im)
+ if im_crops:
+ features = self.extractor(im_crops)
+ else:
+ features = np.array([])
+ return features
diff --git a/src/Yolo/deep_sort/deep_sort/sort/__init__.py b/src/Yolo/deep_sort/deep_sort/sort/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/deep_sort/deep_sort/sort/detection.py b/src/Yolo/deep_sort/deep_sort/sort/detection.py
new file mode 100644
index 0000000..ec306db
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/detection.py
@@ -0,0 +1,28 @@
+# vim: expandtab:ts=4:sw=4
+import numpy as np
+
+
+class Detection(object):
+
+ def __init__(self, tlwh, cls_, confidence, feature):
+ self.tlwh = np.asarray(tlwh, dtype=np.float32)
+ self.cls_ = cls_
+ self.confidence = float(confidence)
+ self.feature = np.asarray(feature, dtype=np.float32)
+
+ def to_tlbr(self):
+ """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
+ `(top left, bottom right)`.
+ """
+ ret = self.tlwh.copy()
+ ret[2:] += ret[:2]
+ return ret
+
+ def to_xyah(self):
+ """Convert bounding box to format `(center x, center y, aspect ratio,
+ height)`, where the aspect ratio is `width / height`.
+ """
+ ret = self.tlwh.copy()
+ ret[:2] += ret[2:] / 2
+ ret[2] /= ret[3]
+ return ret
diff --git a/src/Yolo/deep_sort/deep_sort/sort/iou_matching.py b/src/Yolo/deep_sort/deep_sort/sort/iou_matching.py
new file mode 100644
index 0000000..c4dd0b8
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/iou_matching.py
@@ -0,0 +1,81 @@
+# vim: expandtab:ts=4:sw=4
+from __future__ import absolute_import
+import numpy as np
+from . import linear_assignment
+
+
+def iou(bbox, candidates):
+ """Computer intersection over union.
+
+ Parameters
+ ----------
+ bbox : ndarray
+ A bounding box in format `(top left x, top left y, width, height)`.
+ candidates : ndarray
+ A matrix of candidate bounding boxes (one per row) in the same format
+ as `bbox`.
+
+ Returns
+ -------
+ ndarray
+ The intersection over union in [0, 1] between the `bbox` and each
+ candidate. A higher score means a larger fraction of the `bbox` is
+ occluded by the candidate.
+
+ """
+ bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
+ candidates_tl = candidates[:, :2]
+ candidates_br = candidates[:, :2] + candidates[:, 2:]
+
+ tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
+ np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
+ br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
+ np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
+ wh = np.maximum(0., br - tl)
+
+ area_intersection = wh.prod(axis=1)
+ area_bbox = bbox[2:].prod()
+ area_candidates = candidates[:, 2:].prod(axis=1)
+ return area_intersection / (area_bbox + area_candidates - area_intersection)
+
+
+def iou_cost(tracks, detections, track_indices=None,
+ detection_indices=None):
+ """An intersection over union distance metric.
+
+ Parameters
+ ----------
+ tracks : List[deep_sort.track.Track]
+ A list of tracks.
+ detections : List[deep_sort.detection.Detection]
+ A list of detections.
+ track_indices : Optional[List[int]]
+ A list of indices to tracks that should be matched. Defaults to
+ all `tracks`.
+ detection_indices : Optional[List[int]]
+ A list of indices to detections that should be matched. Defaults
+ to all `detections`.
+
+ Returns
+ -------
+ ndarray
+ Returns a cost matrix of shape
+ len(track_indices), len(detection_indices) where entry (i, j) is
+ `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
+
+ """
+ if track_indices is None:
+ track_indices = np.arange(len(tracks))
+ if detection_indices is None:
+ detection_indices = np.arange(len(detections))
+
+ cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
+ for row, track_idx in enumerate(track_indices):
+ if tracks[track_idx].time_since_update > 1:
+ cost_matrix[row, :] = linear_assignment.INFTY_COST
+ continue
+
+ bbox = tracks[track_idx].to_tlwh()
+ candidates = np.asarray([detections[i].tlwh for i in detection_indices])
+ cost_matrix[row, :] = 1. - iou(bbox, candidates)
+ return cost_matrix
diff --git a/src/Yolo/deep_sort/deep_sort/sort/kalman_filter.py b/src/Yolo/deep_sort/deep_sort/sort/kalman_filter.py
new file mode 100644
index 0000000..787a76e
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/kalman_filter.py
@@ -0,0 +1,229 @@
+# vim: expandtab:ts=4:sw=4
+import numpy as np
+import scipy.linalg
+
+
+"""
+Table for the 0.95 quantile of the chi-square distribution with N degrees of
+freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
+function and used as Mahalanobis gating threshold.
+"""
+chi2inv95 = {
+ 1: 3.8415,
+ 2: 5.9915,
+ 3: 7.8147,
+ 4: 9.4877,
+ 5: 11.070,
+ 6: 12.592,
+ 7: 14.067,
+ 8: 15.507,
+ 9: 16.919}
+
+
+class KalmanFilter(object):
+ """
+ A simple Kalman filter for tracking bounding boxes in image space.
+
+ The 8-dimensional state space
+
+ x, y, a, h, vx, vy, va, vh
+
+ contains the bounding box center position (x, y), aspect ratio a, height h,
+ and their respective velocities.
+
+ Object motion follows a constant velocity model. The bounding box location
+ (x, y, a, h) is taken as direct observation of the state space (linear
+ observation model).
+
+ """
+
+ def __init__(self):
+ ndim, dt = 4, 1.
+
+ # Create Kalman filter model matrices.
+ self._motion_mat = np.eye(2 * ndim, 2 * ndim)
+ for i in range(ndim):
+ self._motion_mat[i, ndim + i] = dt
+ self._update_mat = np.eye(ndim, 2 * ndim)
+
+ # Motion and observation uncertainty are chosen relative to the current
+ # state estimate. These weights control the amount of uncertainty in
+ # the model. This is a bit hacky.
+ self._std_weight_position = 1. / 20
+ self._std_weight_velocity = 1. / 160
+
+ def initiate(self, measurement):
+ """Create track from unassociated measurement.
+
+ Parameters
+ ----------
+ measurement : ndarray
+ Bounding box coordinates (x, y, a, h) with center position (x, y),
+ aspect ratio a, and height h.
+
+ Returns
+ -------
+ (ndarray, ndarray)
+ Returns the mean vector (8 dimensional) and covariance matrix (8x8
+ dimensional) of the new track. Unobserved velocities are initialized
+ to 0 mean.
+
+ """
+ mean_pos = measurement
+ mean_vel = np.zeros_like(mean_pos)
+ mean = np.r_[mean_pos, mean_vel]
+
+ std = [
+ 2 * self._std_weight_position * measurement[3],
+ 2 * self._std_weight_position * measurement[3],
+ 1e-2,
+ 2 * self._std_weight_position * measurement[3],
+ 10 * self._std_weight_velocity * measurement[3],
+ 10 * self._std_weight_velocity * measurement[3],
+ 1e-5,
+ 10 * self._std_weight_velocity * measurement[3]]
+ covariance = np.diag(np.square(std))
+ return mean, covariance
+
+ def predict(self, mean, covariance):
+ """Run Kalman filter prediction step.
+
+ Parameters
+ ----------
+ mean : ndarray
+ The 8 dimensional mean vector of the object state at the previous
+ time step.
+ covariance : ndarray
+ The 8x8 dimensional covariance matrix of the object state at the
+ previous time step.
+
+ Returns
+ -------
+ (ndarray, ndarray)
+ Returns the mean vector and covariance matrix of the predicted
+ state. Unobserved velocities are initialized to 0 mean.
+
+ """
+ std_pos = [
+ self._std_weight_position * mean[3],
+ self._std_weight_position * mean[3],
+ 1e-2,
+ self._std_weight_position * mean[3]]
+ std_vel = [
+ self._std_weight_velocity * mean[3],
+ self._std_weight_velocity * mean[3],
+ 1e-5,
+ self._std_weight_velocity * mean[3]]
+ motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
+
+ mean = np.dot(self._motion_mat, mean)
+ covariance = np.linalg.multi_dot((
+ self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
+
+ return mean, covariance
+
+ def project(self, mean, covariance):
+ """Project state distribution to measurement space.
+
+ Parameters
+ ----------
+ mean : ndarray
+ The state's mean vector (8 dimensional array).
+ covariance : ndarray
+ The state's covariance matrix (8x8 dimensional).
+
+ Returns
+ -------
+ (ndarray, ndarray)
+ Returns the projected mean and covariance matrix of the given state
+ estimate.
+
+ """
+ std = [
+ self._std_weight_position * mean[3],
+ self._std_weight_position * mean[3],
+ 1e-1,
+ self._std_weight_position * mean[3]]
+ innovation_cov = np.diag(np.square(std))
+
+ mean = np.dot(self._update_mat, mean)
+ covariance = np.linalg.multi_dot((
+ self._update_mat, covariance, self._update_mat.T))
+ return mean, covariance + innovation_cov
+
+ def update(self, mean, covariance, measurement):
+ """Run Kalman filter correction step.
+
+ Parameters
+ ----------
+ mean : ndarray
+ The predicted state's mean vector (8 dimensional).
+ covariance : ndarray
+ The state's covariance matrix (8x8 dimensional).
+ measurement : ndarray
+ The 4 dimensional measurement vector (x, y, a, h), where (x, y)
+ is the center position, a the aspect ratio, and h the height of the
+ bounding box.
+
+ Returns
+ -------
+ (ndarray, ndarray)
+ Returns the measurement-corrected state distribution.
+
+ """
+ projected_mean, projected_cov = self.project(mean, covariance)
+
+ chol_factor, lower = scipy.linalg.cho_factor(
+ projected_cov, lower=True, check_finite=False)
+ kalman_gain = scipy.linalg.cho_solve(
+ (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
+ check_finite=False).T
+ innovation = measurement - projected_mean
+
+ new_mean = mean + np.dot(innovation, kalman_gain.T)
+ new_covariance = covariance - np.linalg.multi_dot((
+ kalman_gain, projected_cov, kalman_gain.T))
+ return new_mean, new_covariance
+
+ def gating_distance(self, mean, covariance, measurements,
+ only_position=False):
+ """Compute gating distance between state distribution and measurements.
+
+ A suitable distance threshold can be obtained from `chi2inv95`. If
+ `only_position` is False, the chi-square distribution has 4 degrees of
+ freedom, otherwise 2.
+
+ Parameters
+ ----------
+ mean : ndarray
+ Mean vector over the state distribution (8 dimensional).
+ covariance : ndarray
+ Covariance of the state distribution (8x8 dimensional).
+ measurements : ndarray
+ An Nx4 dimensional matrix of N measurements, each in
+ format (x, y, a, h) where (x, y) is the bounding box center
+ position, a the aspect ratio, and h the height.
+ only_position : Optional[bool]
+ If True, distance computation is done with respect to the bounding
+ box center position only.
+
+ Returns
+ -------
+ ndarray
+ Returns an array of length N, where the i-th element contains the
+ squared Mahalanobis distance between (mean, covariance) and
+ `measurements[i]`.
+
+ """
+ mean, covariance = self.project(mean, covariance)
+ if only_position:
+ mean, covariance = mean[:2], covariance[:2, :2]
+ measurements = measurements[:, :2]
+
+ cholesky_factor = np.linalg.cholesky(covariance)
+ d = measurements - mean
+ z = scipy.linalg.solve_triangular(
+ cholesky_factor, d.T, lower=True, check_finite=False,
+ overwrite_b=True)
+ squared_maha = np.sum(z * z, axis=0)
+ return squared_maha
diff --git a/src/Yolo/deep_sort/deep_sort/sort/linear_assignment.py b/src/Yolo/deep_sort/deep_sort/sort/linear_assignment.py
new file mode 100644
index 0000000..2006230
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/linear_assignment.py
@@ -0,0 +1,159 @@
+# vim: expandtab:ts=4:sw=4
+from __future__ import absolute_import
+import numpy as np
+# from sklearn.utils.linear_assignment_ import linear_assignment
+from scipy.optimize import linear_sum_assignment as linear_assignment
+from . import kalman_filter
+
+
+INFTY_COST = 1e+5
+
+
+def min_cost_matching(
+ distance_metric, max_distance, tracks, detections, track_indices=None,
+ detection_indices=None):
+ if track_indices is None:
+ track_indices = np.arange(len(tracks))
+ if detection_indices is None:
+ detection_indices = np.arange(len(detections))
+
+ if len(detection_indices) == 0 or len(track_indices) == 0:
+ return [], track_indices, detection_indices # Nothing to match.
+
+ cost_matrix = distance_metric(
+ tracks, detections, track_indices, detection_indices)
+ cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
+
+ row_indices, col_indices = linear_assignment(cost_matrix)
+
+ matches, unmatched_tracks, unmatched_detections = [], [], []
+ for col, detection_idx in enumerate(detection_indices):
+ if col not in col_indices:
+ unmatched_detections.append(detection_idx)
+ for row, track_idx in enumerate(track_indices):
+ if row not in row_indices:
+ unmatched_tracks.append(track_idx)
+ for row, col in zip(row_indices, col_indices):
+ track_idx = track_indices[row]
+ detection_idx = detection_indices[col]
+ if cost_matrix[row, col] > max_distance:
+ unmatched_tracks.append(track_idx)
+ unmatched_detections.append(detection_idx)
+ else:
+ matches.append((track_idx, detection_idx))
+ return matches, unmatched_tracks, unmatched_detections
+
+
+def matching_cascade(
+ distance_metric, max_distance, cascade_depth, tracks, detections,
+ track_indices=None, detection_indices=None):
+ """Run matching cascade.
+
+ Parameters
+ ----------
+ distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
+ The distance metric is given a list of tracks and detections as well as
+ a list of N track indices and M detection indices. The metric should
+ return the NxM dimensional cost matrix, where element (i, j) is the
+ association cost between the i-th track in the given track indices and
+ the j-th detection in the given detection indices.
+ max_distance : float
+ Gating threshold. Associations with cost larger than this value are
+ disregarded.
+ cascade_depth: int
+ The cascade depth, should be se to the maximum track age.
+ tracks : List[track.Track]
+ A list of predicted tracks at the current time step.
+ detections : List[detection.Detection]
+ A list of detections at the current time step.
+ track_indices : Optional[List[int]]
+ List of track indices that maps rows in `cost_matrix` to tracks in
+ `tracks` (see description above). Defaults to all tracks.
+ detection_indices : Optional[List[int]]
+ List of detection indices that maps columns in `cost_matrix` to
+ detections in `detections` (see description above). Defaults to all
+ detections.
+
+ Returns
+ -------
+ (List[(int, int)], List[int], List[int])
+ Returns a tuple with the following three entries:
+ * A list of matched track and detection indices.
+ * A list of unmatched track indices.
+ * A list of unmatched detection indices.
+
+ """
+ if track_indices is None:
+ track_indices = list(range(len(tracks)))
+ if detection_indices is None:
+ detection_indices = list(range(len(detections)))
+
+ unmatched_detections = detection_indices
+ matches = []
+ for level in range(cascade_depth):
+ if len(unmatched_detections) == 0: # No detections left
+ break
+
+ track_indices_l = [
+ k for k in track_indices
+ if tracks[k].time_since_update == 1 + level
+ ]
+ if len(track_indices_l) == 0: # Nothing to match at this level
+ continue
+
+ matches_l, _, unmatched_detections = \
+ min_cost_matching(
+ distance_metric, max_distance, tracks, detections,
+ track_indices_l, unmatched_detections)
+ matches += matches_l
+ unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
+ return matches, unmatched_tracks, unmatched_detections
+
+
+def gate_cost_matrix(
+ kf, cost_matrix, tracks, detections, track_indices, detection_indices,
+ gated_cost=INFTY_COST, only_position=False):
+ """Invalidate infeasible entries in cost matrix based on the state
+ distributions obtained by Kalman filtering.
+
+ Parameters
+ ----------
+ kf : The Kalman filter.
+ cost_matrix : ndarray
+ The NxM dimensional cost matrix, where N is the number of track indices
+ and M is the number of detection indices, such that entry (i, j) is the
+ association cost between `tracks[track_indices[i]]` and
+ `detections[detection_indices[j]]`.
+ tracks : List[track.Track]
+ A list of predicted tracks at the current time step.
+ detections : List[detection.Detection]
+ A list of detections at the current time step.
+ track_indices : List[int]
+ List of track indices that maps rows in `cost_matrix` to tracks in
+ `tracks` (see description above).
+ detection_indices : List[int]
+ List of detection indices that maps columns in `cost_matrix` to
+ detections in `detections` (see description above).
+ gated_cost : Optional[float]
+ Entries in the cost matrix corresponding to infeasible associations are
+ set this value. Defaults to a very large value.
+ only_position : Optional[bool]
+ If True, only the x, y position of the state distribution is considered
+ during gating. Defaults to False.
+
+ Returns
+ -------
+ ndarray
+ Returns the modified cost matrix.
+
+ """
+ gating_dim = 2 if only_position else 4
+ gating_threshold = kalman_filter.chi2inv95[gating_dim]
+ measurements = np.asarray(
+ [detections[i].to_xyah() for i in detection_indices])
+ for row, track_idx in enumerate(track_indices):
+ track = tracks[track_idx]
+ gating_distance = kf.gating_distance(
+ track.mean, track.covariance, measurements, only_position)
+ cost_matrix[row, gating_distance > gating_threshold] = gated_cost
+ return cost_matrix
diff --git a/src/Yolo/deep_sort/deep_sort/sort/nn_matching.py b/src/Yolo/deep_sort/deep_sort/sort/nn_matching.py
new file mode 100644
index 0000000..2e7bfea
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/nn_matching.py
@@ -0,0 +1,177 @@
+# vim: expandtab:ts=4:sw=4
+import numpy as np
+
+
+def _pdist(a, b):
+ """Compute pair-wise squared distance between points in `a` and `b`.
+
+ Parameters
+ ----------
+ a : array_like
+ An NxM matrix of N samples of dimensionality M.
+ b : array_like
+ An LxM matrix of L samples of dimensionality M.
+
+ Returns
+ -------
+ ndarray
+ Returns a matrix of size len(a), len(b) such that eleement (i, j)
+ contains the squared distance between `a[i]` and `b[j]`.
+
+ """
+ a, b = np.asarray(a), np.asarray(b)
+ if len(a) == 0 or len(b) == 0:
+ return np.zeros((len(a), len(b)))
+ a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
+ r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
+ r2 = np.clip(r2, 0., float(np.inf))
+ return r2
+
+
+def _cosine_distance(a, b, data_is_normalized=False):
+ """Compute pair-wise cosine distance between points in `a` and `b`.
+
+ Parameters
+ ----------
+ a : array_like
+ An NxM matrix of N samples of dimensionality M.
+ b : array_like
+ An LxM matrix of L samples of dimensionality M.
+ data_is_normalized : Optional[bool]
+ If True, assumes rows in a and b are unit length vectors.
+ Otherwise, a and b are explicitly normalized to lenght 1.
+
+ Returns
+ -------
+ ndarray
+ Returns a matrix of size len(a), len(b) such that eleement (i, j)
+ contains the squared distance between `a[i]` and `b[j]`.
+
+ """
+ if not data_is_normalized:
+ a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
+ b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
+ return 1. - np.dot(a, b.T)
+
+
+def _nn_euclidean_distance(x, y):
+ """ Helper function for nearest neighbor distance metric (Euclidean).
+
+ Parameters
+ ----------
+ x : ndarray
+ A matrix of N row-vectors (sample points).
+ y : ndarray
+ A matrix of M row-vectors (query points).
+
+ Returns
+ -------
+ ndarray
+ A vector of length M that contains for each entry in `y` the
+ smallest Euclidean distance to a sample in `x`.
+
+ """
+ distances = _pdist(x, y)
+ return np.maximum(0.0, distances.min(axis=0))
+
+
+def _nn_cosine_distance(x, y):
+ """ Helper function for nearest neighbor distance metric (cosine).
+
+ Parameters
+ ----------
+ x : ndarray
+ A matrix of N row-vectors (sample points).
+ y : ndarray
+ A matrix of M row-vectors (query points).
+
+ Returns
+ -------
+ ndarray
+ A vector of length M that contains for each entry in `y` the
+ smallest cosine distance to a sample in `x`.
+
+ """
+ distances = _cosine_distance(x, y)
+ return distances.min(axis=0)
+
+
+class NearestNeighborDistanceMetric(object):
+ """
+ A nearest neighbor distance metric that, for each target, returns
+ the closest distance to any sample that has been observed so far.
+
+ Parameters
+ ----------
+ metric : str
+ Either "euclidean" or "cosine".
+ matching_threshold: float
+ The matching threshold. Samples with larger distance are considered an
+ invalid match.
+ budget : Optional[int]
+ If not None, fix samples per class to at most this number. Removes
+ the oldest samples when the budget is reached.
+
+ Attributes
+ ----------
+ samples : Dict[int -> List[ndarray]]
+ A dictionary that maps from target identities to the list of samples
+ that have been observed so far.
+
+ """
+
+ def __init__(self, metric, matching_threshold, budget=None):
+
+
+ if metric == "euclidean":
+ self._metric = _nn_euclidean_distance
+ elif metric == "cosine":
+ self._metric = _nn_cosine_distance
+ else:
+ raise ValueError(
+ "Invalid metric; must be either 'euclidean' or 'cosine'")
+ self.matching_threshold = matching_threshold
+ self.budget = budget
+ self.samples = {}
+
+ def partial_fit(self, features, targets, active_targets):
+ """Update the distance metric with new data.
+
+ Parameters
+ ----------
+ features : ndarray
+ An NxM matrix of N features of dimensionality M.
+ targets : ndarray
+ An integer array of associated target identities.
+ active_targets : List[int]
+ A list of targets that are currently present in the scene.
+
+ """
+ for feature, target in zip(features, targets):
+ self.samples.setdefault(target, []).append(feature)
+ if self.budget is not None:
+ self.samples[target] = self.samples[target][-self.budget:]
+ self.samples = {k: self.samples[k] for k in active_targets}
+
+ def distance(self, features, targets):
+ """Compute distance between features and targets.
+
+ Parameters
+ ----------
+ features : ndarray
+ An NxM matrix of N features of dimensionality M.
+ targets : List[int]
+ A list of targets to match the given `features` against.
+
+ Returns
+ -------
+ ndarray
+ Returns a cost matrix of shape len(targets), len(features), where
+ element (i, j) contains the closest squared distance between
+ `targets[i]` and `features[j]`.
+
+ """
+ cost_matrix = np.zeros((len(targets), len(features)))
+ for i, target in enumerate(targets):
+ cost_matrix[i, :] = self._metric(self.samples[target], features)
+ return cost_matrix
diff --git a/src/Yolo/deep_sort/deep_sort/sort/preprocessing.py b/src/Yolo/deep_sort/deep_sort/sort/preprocessing.py
new file mode 100644
index 0000000..d64d5af
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/preprocessing.py
@@ -0,0 +1,73 @@
+# vim: expandtab:ts=4:sw=4
+import numpy as np
+import cv2
+
+
+def non_max_suppression(boxes, max_bbox_overlap, scores=None):
+ """Suppress overlapping detections.
+
+ Original code from [1]_ has been adapted to include confidence score.
+
+ .. [1] http://www.pyimagesearch.com/2015/02/16/
+ faster-non-maximum-suppression-python/
+
+ Examples
+ --------
+
+ >>> boxes = [d.roi for d in detections]
+ >>> scores = [d.confidence for d in detections]
+ >>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
+ >>> detections = [detections[i] for i in indices]
+
+ Parameters
+ ----------
+ boxes : ndarray
+ Array of ROIs (x, y, width, height).
+ max_bbox_overlap : float
+ ROIs that overlap more than this values are suppressed.
+ scores : Optional[array_like]
+ Detector confidence score.
+
+ Returns
+ -------
+ List[int]
+ Returns indices of detections that have survived non-maxima suppression.
+
+ """
+ if len(boxes) == 0:
+ return []
+
+ boxes = boxes.astype(np.float32)
+ pick = []
+
+ x1 = boxes[:, 0]
+ y1 = boxes[:, 1]
+ x2 = boxes[:, 2] + boxes[:, 0]
+ y2 = boxes[:, 3] + boxes[:, 1]
+
+ area = (x2 - x1 + 1) * (y2 - y1 + 1)
+ if scores is not None:
+ idxs = np.argsort(scores)
+ else:
+ idxs = np.argsort(y2)
+
+ while len(idxs) > 0:
+ last = len(idxs) - 1
+ i = idxs[last]
+ pick.append(i)
+
+ xx1 = np.maximum(x1[i], x1[idxs[:last]])
+ yy1 = np.maximum(y1[i], y1[idxs[:last]])
+ xx2 = np.minimum(x2[i], x2[idxs[:last]])
+ yy2 = np.minimum(y2[i], y2[idxs[:last]])
+
+ w = np.maximum(0, xx2 - xx1 + 1)
+ h = np.maximum(0, yy2 - yy1 + 1)
+
+ overlap = (w * h) / area[idxs[:last]]
+
+ idxs = np.delete(
+ idxs, np.concatenate(
+ ([last], np.where(overlap > max_bbox_overlap)[0])))
+
+ return pick
diff --git a/src/Yolo/deep_sort/deep_sort/sort/track.py b/src/Yolo/deep_sort/deep_sort/sort/track.py
new file mode 100644
index 0000000..e46d391
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/track.py
@@ -0,0 +1,168 @@
+# vim: expandtab:ts=4:sw=4
+
+
+class TrackState:
+ """
+ Enumeration type for the single target track state. Newly created tracks are
+ classified as `tentative` until enough evidence has been collected. Then,
+ the track state is changed to `confirmed`. Tracks that are no longer alive
+ are classified as `deleted` to mark them for removal from the set of active
+ tracks.
+
+ """
+
+ Tentative = 1
+ Confirmed = 2
+ Deleted = 3
+
+
+class Track:
+ """
+ A single target track with state space `(x, y, a, h)` and associated
+ velocities, where `(x, y)` is the center of the bounding box, `a` is the
+ aspect ratio and `h` is the height.
+
+ Parameters
+ ----------
+ mean : ndarray
+ Mean vector of the initial state distribution.
+ covariance : ndarray
+ Covariance matrix of the initial state distribution.
+ track_id : int
+ A unique track identifier.
+ n_init : int
+ Number of consecutive detections before the track is confirmed. The
+ track state is set to `Deleted` if a miss occurs within the first
+ `n_init` frames.
+ max_age : int
+ The maximum number of consecutive misses before the track state is
+ set to `Deleted`.
+ feature : Optional[ndarray]
+ Feature vector of the detection this track originates from. If not None,
+ this feature is added to the `features` cache.
+
+ Attributes
+ ----------
+ mean : ndarray
+ Mean vector of the initial state distribution.
+ covariance : ndarray
+ Covariance matrix of the initial state distribution.
+ track_id : int
+ A unique track identifier.
+ hits : int
+ Total number of measurement updates.
+ age : int
+ Total number of frames since first occurance.
+ time_since_update : int
+ Total number of frames since last measurement update.
+ state : TrackState
+ The current track state.
+ features : List[ndarray]
+ A cache of features. On each measurement update, the associated feature
+ vector is added to this list.
+
+ """
+
+ def __init__(self, mean, cls_, covariance, track_id, n_init, max_age,
+ feature=None):
+ self.mean = mean
+ self.cls_ = cls_
+ self.covariance = covariance
+ self.track_id = track_id
+ self.hits = 1
+ self.age = 1
+ self.time_since_update = 0
+
+ self.state = TrackState.Tentative
+ self.features = []
+ if feature is not None:
+ self.features.append(feature)
+
+ self._n_init = n_init
+ self._max_age = max_age
+
+ def to_tlwh(self):
+ """Get current position in bounding box format `(top left x, top left y,
+ width, height)`.
+
+ Returns
+ -------
+ ndarray
+ The bounding box.
+
+ """
+ ret = self.mean[:4].copy()
+ ret[2] *= ret[3]
+ ret[:2] -= ret[2:] / 2
+ return ret
+
+ def to_tlbr(self):
+ """Get current position in bounding box format `(min x, miny, max x,
+ max y)`.
+
+ Returns
+ -------
+ ndarray
+ The bounding box.
+
+ """
+ ret = self.to_tlwh()
+ ret[2:] = ret[:2] + ret[2:]
+ return ret
+
+ def predict(self, kf):
+ """Propagate the state distribution to the current time step using a
+ Kalman filter prediction step.
+
+ Parameters
+ ----------
+ kf : kalman_filter.KalmanFilter
+ The Kalman filter.
+
+ """
+ self.mean, self.covariance = kf.predict(self.mean, self.covariance)
+ self.age += 1
+ self.time_since_update += 1
+
+ def update(self, kf, detection):
+ """Perform Kalman filter measurement update step and update the feature
+ cache.
+
+ Parameters
+ ----------
+ kf : kalman_filter.KalmanFilter
+ The Kalman filter.
+ detection : Detection
+ The associated detection.
+
+ """
+ self.mean, self.covariance = kf.update(
+ self.mean, self.covariance, detection.to_xyah())
+ self.features.append(detection.feature)
+ self.cls_ = detection.cls_
+
+ self.hits += 1
+ self.time_since_update = 0
+ if self.state == TrackState.Tentative and self.hits >= self._n_init:
+ self.state = TrackState.Confirmed
+
+ def mark_missed(self):
+ """Mark this track as missed (no association at the current time step).
+ """
+ if self.state == TrackState.Tentative:
+ self.state = TrackState.Deleted
+ elif self.time_since_update > self._max_age:
+ self.state = TrackState.Deleted
+
+ def is_tentative(self):
+ """Returns True if this track is tentative (unconfirmed).
+ """
+ return self.state == TrackState.Tentative
+
+ def is_confirmed(self):
+ """Returns True if this track is confirmed."""
+ return self.state == TrackState.Confirmed
+
+ def is_deleted(self):
+ """Returns True if this track is dead and should be deleted."""
+ return self.state == TrackState.Deleted
diff --git a/src/Yolo/deep_sort/deep_sort/sort/tracker.py b/src/Yolo/deep_sort/deep_sort/sort/tracker.py
new file mode 100644
index 0000000..5cc62a3
--- /dev/null
+++ b/src/Yolo/deep_sort/deep_sort/sort/tracker.py
@@ -0,0 +1,109 @@
+# vim: expandtab:ts=4:sw=4
+from __future__ import absolute_import
+import numpy as np
+from . import kalman_filter
+from . import linear_assignment
+from . import iou_matching
+from .track import Track
+
+
+class Tracker:
+
+ def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
+ self.metric = metric
+ self.max_iou_distance = max_iou_distance
+ self.max_age = max_age
+ self.n_init = n_init
+
+ self.kf = kalman_filter.KalmanFilter()
+ self.tracks = []
+ self._next_id = 1
+
+ def predict(self):
+ """Propagate track state distributions one time step forward.
+
+ This function should be called once every time step, before `update`.
+ """
+ for track in self.tracks:
+ track.predict(self.kf)
+
+ def update(self, detections):
+ """Perform measurement update and track management.
+
+ Parameters
+ ----------
+ detections : List[deep_sort.detection.Detection]
+ A list of detections at the current time step.
+
+ """
+ # Run matching cascade.
+ matches, unmatched_tracks, unmatched_detections = \
+ self._match(detections)
+
+ # Update track set.
+ for track_idx, detection_idx in matches:
+ self.tracks[track_idx].update(
+ self.kf, detections[detection_idx])
+ for track_idx in unmatched_tracks:
+ self.tracks[track_idx].mark_missed()
+ for detection_idx in unmatched_detections:
+ self._initiate_track(detections[detection_idx])
+ self.tracks = [t for t in self.tracks if not t.is_deleted()]
+
+ # Update distance metric.
+ active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
+ features, targets = [], []
+ for track in self.tracks:
+ if not track.is_confirmed():
+ continue
+ features += track.features
+ targets += [track.track_id for _ in track.features]
+ track.features = []
+ self.metric.partial_fit(
+ np.asarray(features), np.asarray(targets), active_targets)
+
+ def _match(self, detections):
+
+ def gated_metric(tracks, dets, track_indices, detection_indices):
+ features = np.array([dets[i].feature for i in detection_indices])
+ targets = np.array([tracks[i].track_id for i in track_indices])
+ cost_matrix = self.metric.distance(features, targets)
+ cost_matrix = linear_assignment.gate_cost_matrix(
+ self.kf, cost_matrix, tracks, dets, track_indices,
+ detection_indices)
+
+ return cost_matrix
+
+ # Split track set into confirmed and unconfirmed tracks.
+ confirmed_tracks = [
+ i for i, t in enumerate(self.tracks) if t.is_confirmed()]
+ unconfirmed_tracks = [
+ i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
+
+ # Associate confirmed tracks using appearance features.
+ matches_a, unmatched_tracks_a, unmatched_detections = \
+ linear_assignment.matching_cascade(
+ gated_metric, self.metric.matching_threshold, self.max_age,
+ self.tracks, detections, confirmed_tracks)
+
+ # Associate remaining tracks together with unconfirmed tracks using IOU.
+ iou_track_candidates = unconfirmed_tracks + [
+ k for k in unmatched_tracks_a if
+ self.tracks[k].time_since_update == 1]
+ unmatched_tracks_a = [
+ k for k in unmatched_tracks_a if
+ self.tracks[k].time_since_update != 1]
+ matches_b, unmatched_tracks_b, unmatched_detections = \
+ linear_assignment.min_cost_matching(
+ iou_matching.iou_cost, self.max_iou_distance, self.tracks,
+ detections, iou_track_candidates, unmatched_detections)
+ matches = matches_a + matches_b
+ unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
+ return matches, unmatched_tracks, unmatched_detections
+
+ def _initiate_track(self, detection):
+ mean, covariance = self.kf.initiate(detection.to_xyah())
+ self.tracks.append(Track(
+ mean, detection.cls_, covariance, self._next_id, self.n_init, self.max_age,
+ detection.feature))
+ self._next_id += 1
diff --git a/src/Yolo/deep_sort/utils/__init__.py b/src/Yolo/deep_sort/utils/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/deep_sort/utils/asserts.py b/src/Yolo/deep_sort/utils/asserts.py
new file mode 100644
index 0000000..59a73cc
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/asserts.py
@@ -0,0 +1,13 @@
+from os import environ
+
+
+def assert_in(file, files_to_check):
+ if file not in files_to_check:
+ raise AssertionError("{} does not exist in the list".format(str(file)))
+ return True
+
+
+def assert_in_env(check_list: list):
+ for item in check_list:
+ assert_in(item, environ.keys())
+ return True
diff --git a/src/Yolo/deep_sort/utils/draw.py b/src/Yolo/deep_sort/utils/draw.py
new file mode 100644
index 0000000..bc7cb53
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/draw.py
@@ -0,0 +1,36 @@
+import numpy as np
+import cv2
+
+palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
+
+
+def compute_color_for_labels(label):
+ """
+ Simple function that adds fixed color depending on the class
+ """
+ color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
+ return tuple(color)
+
+
+def draw_boxes(img, bbox, identities=None, offset=(0,0)):
+ for i,box in enumerate(bbox):
+ x1,y1,x2,y2 = [int(i) for i in box]
+ x1 += offset[0]
+ x2 += offset[0]
+ y1 += offset[1]
+ y2 += offset[1]
+ # box text and bar
+ id = int(identities[i]) if identities is not None else 0
+ color = compute_color_for_labels(id)
+ label = '{}{:d}'.format("", id)
+ t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
+ cv2.rectangle(img,(x1, y1),(x2,y2),color,3)
+ cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1)
+ cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2)
+ return img
+
+
+
+if __name__ == '__main__':
+ for i in range(82):
+ print(compute_color_for_labels(i))
diff --git a/src/Yolo/deep_sort/utils/evaluation.py b/src/Yolo/deep_sort/utils/evaluation.py
new file mode 100644
index 0000000..1001794
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/evaluation.py
@@ -0,0 +1,103 @@
+import os
+import numpy as np
+import copy
+import motmetrics as mm
+mm.lap.default_solver = 'lap'
+from utils.io import read_results, unzip_objs
+
+
+class Evaluator(object):
+
+ def __init__(self, data_root, seq_name, data_type):
+ self.data_root = data_root
+ self.seq_name = seq_name
+ self.data_type = data_type
+
+ self.load_annotations()
+ self.reset_accumulator()
+
+ def load_annotations(self):
+ assert self.data_type == 'mot'
+
+ gt_filename = os.path.join(self.data_root, self.seq_name, 'gt', 'gt.txt')
+ self.gt_frame_dict = read_results(gt_filename, self.data_type, is_gt=True)
+ self.gt_ignore_frame_dict = read_results(gt_filename, self.data_type, is_ignore=True)
+
+ def reset_accumulator(self):
+ self.acc = mm.MOTAccumulator(auto_id=True)
+
+ def eval_frame(self, frame_id, trk_tlwhs, trk_ids, rtn_events=False):
+ # results
+ trk_tlwhs = np.copy(trk_tlwhs)
+ trk_ids = np.copy(trk_ids)
+
+ # gts
+ gt_objs = self.gt_frame_dict.get(frame_id, [])
+ gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]
+
+ # ignore boxes
+ ignore_objs = self.gt_ignore_frame_dict.get(frame_id, [])
+ ignore_tlwhs = unzip_objs(ignore_objs)[0]
+
+
+ # remove ignored results
+ keep = np.ones(len(trk_tlwhs), dtype=bool)
+ iou_distance = mm.distances.iou_matrix(ignore_tlwhs, trk_tlwhs, max_iou=0.5)
+ if len(iou_distance) > 0:
+ match_is, match_js = mm.lap.linear_sum_assignment(iou_distance)
+ match_is, match_js = map(lambda a: np.asarray(a, dtype=int), [match_is, match_js])
+ match_ious = iou_distance[match_is, match_js]
+
+ match_js = np.asarray(match_js, dtype=int)
+ match_js = match_js[np.logical_not(np.isnan(match_ious))]
+ keep[match_js] = False
+ trk_tlwhs = trk_tlwhs[keep]
+ trk_ids = trk_ids[keep]
+
+ # get distance matrix
+ iou_distance = mm.distances.iou_matrix(gt_tlwhs, trk_tlwhs, max_iou=0.5)
+
+ # acc
+ self.acc.update(gt_ids, trk_ids, iou_distance)
+
+ if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'last_mot_events'):
+ events = self.acc.last_mot_events # only supported by https://github.com/longcw/py-motmetrics
+ else:
+ events = None
+ return events
+
+ def eval_file(self, filename):
+ self.reset_accumulator()
+
+ result_frame_dict = read_results(filename, self.data_type, is_gt=False)
+ frames = sorted(list(set(self.gt_frame_dict.keys()) | set(result_frame_dict.keys())))
+ for frame_id in frames:
+ trk_objs = result_frame_dict.get(frame_id, [])
+ trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
+ self.eval_frame(frame_id, trk_tlwhs, trk_ids, rtn_events=False)
+
+ return self.acc
+
+ @staticmethod
+ def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')):
+ names = copy.deepcopy(names)
+ if metrics is None:
+ metrics = mm.metrics.motchallenge_metrics
+ metrics = copy.deepcopy(metrics)
+
+ mh = mm.metrics.create()
+ summary = mh.compute_many(
+ accs,
+ metrics=metrics,
+ names=names,
+ generate_overall=True
+ )
+
+ return summary
+
+ @staticmethod
+ def save_summary(summary, filename):
+ import pandas as pd
+ writer = pd.ExcelWriter(filename)
+ summary.to_excel(writer)
+ writer.save()
diff --git a/src/Yolo/deep_sort/utils/io.py b/src/Yolo/deep_sort/utils/io.py
new file mode 100644
index 0000000..2dc9afd
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/io.py
@@ -0,0 +1,133 @@
+import os
+from typing import Dict
+import numpy as np
+
+# from utils.log import get_logger
+
+
+def write_results(filename, results, data_type):
+ if data_type == 'mot':
+ save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
+ elif data_type == 'kitti':
+ save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
+ else:
+ raise ValueError(data_type)
+
+ with open(filename, 'w') as f:
+ for frame_id, tlwhs, track_ids in results:
+ if data_type == 'kitti':
+ frame_id -= 1
+ for tlwh, track_id in zip(tlwhs, track_ids):
+ if track_id < 0:
+ continue
+ x1, y1, w, h = tlwh
+ x2, y2 = x1 + w, y1 + h
+ line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
+ f.write(line)
+
+
+# def write_results(filename, results_dict: Dict, data_type: str):
+# if not filename:
+# return
+# path = os.path.dirname(filename)
+# if not os.path.exists(path):
+# os.makedirs(path)
+
+# if data_type in ('mot', 'mcmot', 'lab'):
+# save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
+# elif data_type == 'kitti':
+# save_format = '{frame} {id} pedestrian -1 -1 -10 {x1} {y1} {x2} {y2} -1 -1 -1 -1000 -1000 -1000 -10 {score}\n'
+# else:
+# raise ValueError(data_type)
+
+# with open(filename, 'w') as f:
+# for frame_id, frame_data in results_dict.items():
+# if data_type == 'kitti':
+# frame_id -= 1
+# for tlwh, track_id in frame_data:
+# if track_id < 0:
+# continue
+# x1, y1, w, h = tlwh
+# x2, y2 = x1 + w, y1 + h
+# line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=1.0)
+# f.write(line)
+# logger.info('Save results to {}'.format(filename))
+
+
+def read_results(filename, data_type: str, is_gt=False, is_ignore=False):
+ if data_type in ('mot', 'lab'):
+ read_fun = read_mot_results
+ else:
+ raise ValueError('Unknown data type: {}'.format(data_type))
+
+ return read_fun(filename, is_gt, is_ignore)
+
+
+"""
+labels={'ped', ... % 1
+'person_on_vhcl', ... % 2
+'car', ... % 3
+'bicycle', ... % 4
+'mbike', ... % 5
+'non_mot_vhcl', ... % 6
+'static_person', ... % 7
+'distractor', ... % 8
+'occluder', ... % 9
+'occluder_on_grnd', ... %10
+'occluder_full', ... % 11
+'reflection', ... % 12
+'crowd' ... % 13
+};
+"""
+
+
+def read_mot_results(filename, is_gt, is_ignore):
+ valid_labels = {1}
+ ignore_labels = {2, 7, 8, 12}
+ results_dict = dict()
+ if os.path.isfile(filename):
+ with open(filename, 'r') as f:
+ for line in f.readlines():
+ linelist = line.split(',')
+ if len(linelist) < 7:
+ continue
+ fid = int(linelist[0])
+ if fid < 1:
+ continue
+ results_dict.setdefault(fid, list())
+
+ if is_gt:
+ if 'MOT16-' in filename or 'MOT17-' in filename:
+ label = int(float(linelist[7]))
+ mark = int(float(linelist[6]))
+ if mark == 0 or label not in valid_labels:
+ continue
+ score = 1
+ elif is_ignore:
+ if 'MOT16-' in filename or 'MOT17-' in filename:
+ label = int(float(linelist[7]))
+ vis_ratio = float(linelist[8])
+ if label not in ignore_labels and vis_ratio >= 0:
+ continue
+ else:
+ continue
+ score = 1
+ else:
+ score = float(linelist[6])
+
+ tlwh = tuple(map(float, linelist[2:6]))
+ target_id = int(linelist[1])
+
+ results_dict[fid].append((tlwh, target_id, score))
+
+ return results_dict
+
+
+def unzip_objs(objs):
+ if len(objs) > 0:
+ tlwhs, ids, scores = zip(*objs)
+ else:
+ tlwhs, ids, scores = [], [], []
+ tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
+
+ return tlwhs, ids, scores
\ No newline at end of file
diff --git a/src/Yolo/deep_sort/utils/json_logger.py b/src/Yolo/deep_sort/utils/json_logger.py
new file mode 100644
index 0000000..0afd0b4
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/json_logger.py
@@ -0,0 +1,383 @@
+"""
+References:
+ https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f
+"""
+import json
+from os import makedirs
+from os.path import exists, join
+from datetime import datetime
+
+
+class JsonMeta(object):
+ HOURS = 3
+ MINUTES = 59
+ SECONDS = 59
+ PATH_TO_SAVE = 'LOGS'
+ DEFAULT_FILE_NAME = 'remaining'
+
+
+class BaseJsonLogger(object):
+ """
+ This is the base class that returns __dict__ of its own
+ it also returns the dicts of objects in the attributes that are list instances
+
+ """
+
+ def dic(self):
+ # returns dicts of objects
+ out = {}
+ for k, v in self.__dict__.items():
+ if hasattr(v, 'dic'):
+ out[k] = v.dic()
+ elif isinstance(v, list):
+ out[k] = self.list(v)
+ else:
+ out[k] = v
+ return out
+
+ @staticmethod
+ def list(values):
+ # applies the dic method on items in the list
+ return [v.dic() if hasattr(v, 'dic') else v for v in values]
+
+
+class Label(BaseJsonLogger):
+ """
+ For each bounding box there are various categories with confidences. Label class keeps track of that information.
+ """
+
+ def __init__(self, category: str, confidence: float):
+ self.category = category
+ self.confidence = confidence
+
+
+class Bbox(BaseJsonLogger):
+ """
+ This module stores the information for each frame and use them in JsonParser
+ Attributes:
+ labels (list): List of label module.
+ top (int):
+ left (int):
+ width (int):
+ height (int):
+
+ Args:
+ bbox_id (float):
+ top (int):
+ left (int):
+ width (int):
+ height (int):
+
+ References:
+ Check Label module for better understanding.
+
+
+ """
+
+ def __init__(self, bbox_id, top, left, width, height):
+ self.labels = []
+ self.bbox_id = bbox_id
+ self.top = top
+ self.left = left
+ self.width = width
+ self.height = height
+
+ def add_label(self, category, confidence):
+ # adds category and confidence only if top_k is not exceeded.
+ self.labels.append(Label(category, confidence))
+
+ def labels_full(self, value):
+ return len(self.labels) == value
+
+
+class Frame(BaseJsonLogger):
+ """
+ This module stores the information for each frame and use them in JsonParser
+ Attributes:
+ timestamp (float): The elapsed time of captured frame
+ frame_id (int): The frame number of the captured video
+ bboxes (list of Bbox objects): Stores the list of bbox objects.
+
+ References:
+ Check Bbox class for better information
+
+ Args:
+ timestamp (float):
+ frame_id (int):
+
+ """
+
+ def __init__(self, frame_id: int, timestamp: float = None):
+ self.frame_id = frame_id
+ self.timestamp = timestamp
+ self.bboxes = []
+
+ def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int):
+ bboxes_ids = [bbox.bbox_id for bbox in self.bboxes]
+ if bbox_id not in bboxes_ids:
+ self.bboxes.append(Bbox(bbox_id, top, left, width, height))
+ else:
+ raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id))
+
+ def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float):
+ bboxes = {bbox.id: bbox for bbox in self.bboxes}
+ if bbox_id in bboxes.keys():
+ res = bboxes.get(bbox_id)
+ res.add_label(category, confidence)
+ else:
+ raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id))
+
+
+class BboxToJsonLogger(BaseJsonLogger):
+ """
+ ُ This module is designed to automate the task of logging jsons. An example json is used
+ to show the contents of json file shortly
+ Example:
+ {
+ "video_details": {
+ "frame_width": 1920,
+ "frame_height": 1080,
+ "frame_rate": 20,
+ "video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi"
+ },
+ "frames": [
+ {
+ "frame_id": 329,
+ "timestamp": 3365.1254
+ "bboxes": [
+ {
+ "labels": [
+ {
+ "category": "pedestrian",
+ "confidence": 0.9
+ }
+ ],
+ "bbox_id": 0,
+ "top": 1257,
+ "left": 138,
+ "width": 68,
+ "height": 109
+ }
+ ]
+ }],
+
+ Attributes:
+ frames (dict): It's a dictionary that maps each frame_id to json attributes.
+ video_details (dict): information about video file.
+ top_k_labels (int): shows the allowed number of labels
+ start_time (datetime object): we use it to automate the json output by time.
+
+ Args:
+ top_k_labels (int): shows the allowed number of labels
+
+ """
+
+ def __init__(self, top_k_labels: int = 1):
+ self.frames = {}
+ self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None,
+ video_name=None)
+ self.top_k_labels = top_k_labels
+ self.start_time = datetime.now()
+
+ def set_top_k(self, value):
+ self.top_k_labels = value
+
+ def frame_exists(self, frame_id: int) -> bool:
+ """
+ Args:
+ frame_id (int):
+
+ Returns:
+ bool: true if frame_id is recognized
+ """
+ return frame_id in self.frames.keys()
+
+ def add_frame(self, frame_id: int, timestamp: float = None) -> None:
+ """
+ Args:
+ frame_id (int):
+ timestamp (float): opencv captured frame time property
+
+ Raises:
+ ValueError: if frame_id would not exist in class frames attribute
+
+ Returns:
+ None
+
+ """
+ if not self.frame_exists(frame_id):
+ self.frames[frame_id] = Frame(frame_id, timestamp)
+ else:
+ raise ValueError("Frame id: {} already exists".format(frame_id))
+
+ def bbox_exists(self, frame_id: int, bbox_id: int) -> bool:
+ """
+ Args:
+ frame_id:
+ bbox_id:
+
+ Returns:
+ bool: if bbox exists in frame bboxes list
+ """
+ bboxes = []
+ if self.frame_exists(frame_id=frame_id):
+ bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes]
+ return bbox_id in bboxes
+
+ def find_bbox(self, frame_id: int, bbox_id: int):
+ """
+
+ Args:
+ frame_id:
+ bbox_id:
+
+ Returns:
+ bbox_id (int):
+
+ Raises:
+ ValueError: if bbox_id does not exist in the bbox list of specific frame.
+ """
+ if not self.bbox_exists(frame_id, bbox_id):
+ raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id))
+ bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes}
+ return bboxes.get(bbox_id)
+
+ def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None:
+ """
+
+ Args:
+ frame_id (int):
+ bbox_id (int):
+ top (int):
+ left (int):
+ width (int):
+ height (int):
+
+ Returns:
+ None
+
+ Raises:
+ ValueError: if bbox_id already exist in frame information with frame_id
+ ValueError: if frame_id does not exist in frames attribute
+ """
+ if self.frame_exists(frame_id):
+ frame = self.frames[frame_id]
+ if not self.bbox_exists(frame_id, bbox_id):
+ frame.add_bbox(bbox_id, top, left, width, height)
+ else:
+ raise ValueError(
+ "frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id))
+ else:
+ raise ValueError("frame with frame_id: {} does not exist".format(frame_id))
+
+ def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float):
+ """
+ Args:
+ frame_id:
+ bbox_id:
+ category:
+ confidence: the confidence value returned from yolo detection
+
+ Returns:
+ None
+
+ Raises:
+ ValueError: if labels quota (top_k_labels) exceeds.
+ """
+ bbox = self.find_bbox(frame_id, bbox_id)
+ if not bbox.labels_full(self.top_k_labels):
+ bbox.add_label(category, confidence)
+ else:
+ raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id))
+
+ def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None,
+ video_name: str = None):
+ self.video_details['frame_width'] = frame_width
+ self.video_details['frame_height'] = frame_height
+ self.video_details['frame_rate'] = frame_rate
+ self.video_details['video_name'] = video_name
+
+ def output(self):
+ output = {'video_details': self.video_details}
+ result = list(self.frames.values())
+ output['frames'] = [item.dic() for item in result]
+ return output
+
+ def json_output(self, output_name):
+ """
+ Args:
+ output_name:
+
+ Returns:
+ None
+
+ Notes:
+ It creates the json output with `output_name` name.
+ """
+ if not output_name.endswith('.json'):
+ output_name += '.json'
+ with open(output_name, 'w') as file:
+ json.dump(self.output(), file)
+ file.close()
+
+ def set_start(self):
+ self.start_time = datetime.now()
+
+ def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0,
+ seconds: int = 60) -> None:
+ """
+ Notes:
+ Creates folder and then periodically stores the jsons on that address.
+
+ Args:
+ output_dir (str): the directory where output files will be stored
+ hours (int):
+ minutes (int):
+ seconds (int):
+
+ Returns:
+ None
+
+ """
+ end = datetime.now()
+ interval = 0
+ interval += abs(min([hours, JsonMeta.HOURS]) * 3600)
+ interval += abs(min([minutes, JsonMeta.MINUTES]) * 60)
+ interval += abs(min([seconds, JsonMeta.SECONDS]))
+ diff = (end - self.start_time).seconds
+
+ if diff > interval:
+ output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json'
+ if not exists(output_dir):
+ makedirs(output_dir)
+ output = join(output_dir, output_name)
+ self.json_output(output_name=output)
+ self.frames = {}
+ self.start_time = datetime.now()
+
+ def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE):
+ """
+ saves as the number of frames quota increases higher.
+ :param frames_quota:
+ :param frame_counter:
+ :param output_dir:
+ :return:
+ """
+ pass
+
+ def flush(self, output_dir):
+ """
+ Notes:
+ We use this function to output jsons whenever possible.
+ like the time that we exit the while loop of opencv.
+
+ Args:
+ output_dir:
+
+ Returns:
+ None
+
+ """
+ filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json'
+ output = join(output_dir, filename)
+ self.json_output(output_name=output)
diff --git a/src/Yolo/deep_sort/utils/log.py b/src/Yolo/deep_sort/utils/log.py
new file mode 100644
index 0000000..0d48757
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/log.py
@@ -0,0 +1,17 @@
+import logging
+
+
+def get_logger(name='root'):
+ formatter = logging.Formatter(
+ # fmt='%(asctime)s [%(levelname)s]: %(filename)s(%(funcName)s:%(lineno)s) >> %(message)s')
+ fmt='%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
+
+ handler = logging.StreamHandler()
+ handler.setFormatter(formatter)
+
+ logger = logging.getLogger(name)
+ logger.setLevel(logging.INFO)
+ logger.addHandler(handler)
+ return logger
+
+
diff --git a/src/Yolo/deep_sort/utils/parser.py b/src/Yolo/deep_sort/utils/parser.py
new file mode 100644
index 0000000..e057826
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/parser.py
@@ -0,0 +1,38 @@
+import os
+import yaml
+from easydict import EasyDict as edict
+
+class YamlParser(edict):
+ """
+ This is yaml parser based on EasyDict.
+ """
+ def __init__(self, cfg_dict=None, config_file=None):
+ if cfg_dict is None:
+ cfg_dict = {}
+
+ if config_file is not None:
+ assert(os.path.isfile(config_file))
+ with open(config_file, 'r') as fo:
+ cfg_dict.update(yaml.load(fo.read()))
+
+ super(YamlParser, self).__init__(cfg_dict)
+
+
+ def merge_from_file(self, config_file):
+ with open(config_file, 'r') as fo:
+ self.update(yaml.load(fo.read(), Loader=yaml.FullLoader))
+
+
+ def merge_from_dict(self, config_dict):
+ self.update(config_dict)
+
+
+def get_config(config_file=None):
+ return YamlParser(config_file=config_file)
+
+
+if __name__ == "__main__":
+ cfg = YamlParser(config_file="../configs/yolov3.yaml")
+ cfg.merge_from_file("../configs/deep_sort.yaml")
+
+ import ipdb; ipdb.set_trace()
\ No newline at end of file
diff --git a/src/Yolo/deep_sort/utils/tools.py b/src/Yolo/deep_sort/utils/tools.py
new file mode 100644
index 0000000..965fb69
--- /dev/null
+++ b/src/Yolo/deep_sort/utils/tools.py
@@ -0,0 +1,39 @@
+from functools import wraps
+from time import time
+
+
+def is_video(ext: str):
+ """
+ Returns true if ext exists in
+ allowed_exts for video files.
+
+ Args:
+ ext:
+
+ Returns:
+
+ """
+
+ allowed_exts = ('.mp4', '.webm', '.ogg', '.avi', '.wmv', '.mkv', '.3gp')
+ return any((ext.endswith(x) for x in allowed_exts))
+
+
+def tik_tok(func):
+ """
+ keep track of time for each process.
+ Args:
+ func:
+
+ Returns:
+
+ """
+ @wraps(func)
+ def _time_it(*args, **kwargs):
+ start = time()
+ try:
+ return func(*args, **kwargs)
+ finally:
+ end_ = time()
+ print("time: {:.03f}s, fps: {:.03f}".format(end_ - start, 1 / (end_ - start)))
+
+ return _time_it
diff --git a/src/Yolo/demo.py b/src/Yolo/demo.py
new file mode 100644
index 0000000..258a99c
--- /dev/null
+++ b/src/Yolo/demo.py
@@ -0,0 +1,60 @@
+from AIDetector_pytorch import Detector
+import imutils
+import cv2
+import os
+
+def main(video_in):
+
+ name = 'demo'
+
+ det = Detector()
+ cap = cv2.VideoCapture(video_in)
+ fps = int(cap.get(5))
+ print('fps:', fps)
+ t = int(1000/fps)
+
+ videoWriter = None
+
+ while True:
+
+ # try:
+ _, im = cap.read()
+ if im is None:
+ break
+
+
+ x, position = det.detect(im)
+ result = det.feedCap(im)
+ result = result['frame']
+ print(position)
+ result = imutils.resize(result, height=500)
+ if not os.path.exists('runs'):
+ os.mkdir('runs')
+ if videoWriter is None:
+ fourcc = cv2.VideoWriter_fourcc(
+ 'm', 'p', '4', 'v') # opencv3.0
+ videoWriter = cv2.VideoWriter(
+ 'runs/result.mp4', fourcc, fps, (result.shape[1], result.shape[0]))
+
+ videoWriter.write(result)
+ cv2.imshow(name, result)
+ cv2.waitKey(t)
+
+ if cv2.getWindowProperty(name, cv2.WND_PROP_AUTOSIZE) < 1:
+ # 点x退出
+ break
+ # except Exception as e:
+ # print(e)
+ # break
+
+ cap.release()
+ videoWriter.release()
+ cv2.destroyAllWindows()
+
+if __name__ == '__main__':
+ import sys
+ try:
+ main(sys.argv[1] if len(sys.argv) > 1 else 0)
+ except Exception as e:
+ print(e)
+ print('Usage: python demo.py [video_path]')
\ No newline at end of file
diff --git a/src/Yolo/image.png b/src/Yolo/image.png
new file mode 100644
index 0000000..ace8fcf
Binary files /dev/null and b/src/Yolo/image.png differ
diff --git a/src/Yolo/models/__init__.py b/src/Yolo/models/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/models/common.py b/src/Yolo/models/common.py
new file mode 100644
index 0000000..4211db4
--- /dev/null
+++ b/src/Yolo/models/common.py
@@ -0,0 +1,395 @@
+# YOLOv5 common modules
+
+import math
+from copy import copy
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+from PIL import Image
+from torch.cuda import amp
+
+from utils.datasets import letterbox
+from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box
+from utils.plots import colors, plot_one_box
+from utils.torch_utils import time_synchronized
+
+
+def autopad(k, p=None): # kernel, padding
+ # Pad to 'same'
+ if p is None:
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
+ return p
+
+
+def DWConv(c1, c2, k=1, s=1, act=True):
+ # Depthwise convolution
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
+
+
+class Conv(nn.Module):
+ # Standard convolution
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Conv, self).__init__()
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
+
+ def forward(self, x):
+ return self.act(self.bn(self.conv(x)))
+
+ def fuseforward(self, x):
+ return self.act(self.conv(x))
+
+
+class TransformerLayer(nn.Module):
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
+ def __init__(self, c, num_heads):
+ super().__init__()
+ self.q = nn.Linear(c, c, bias=False)
+ self.k = nn.Linear(c, c, bias=False)
+ self.v = nn.Linear(c, c, bias=False)
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
+ self.fc1 = nn.Linear(c, c, bias=False)
+ self.fc2 = nn.Linear(c, c, bias=False)
+
+ def forward(self, x):
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
+ x = self.fc2(self.fc1(x)) + x
+ return x
+
+
+class TransformerBlock(nn.Module):
+ # Vision Transformer https://arxiv.org/abs/2010.11929
+ def __init__(self, c1, c2, num_heads, num_layers):
+ super().__init__()
+ self.conv = None
+ if c1 != c2:
+ self.conv = Conv(c1, c2)
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
+ self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
+ self.c2 = c2
+
+ def forward(self, x):
+ if self.conv is not None:
+ x = self.conv(x)
+ b, _, w, h = x.shape
+ p = x.flatten(2)
+ p = p.unsqueeze(0)
+ p = p.transpose(0, 3)
+ p = p.squeeze(3)
+ e = self.linear(p)
+ x = p + e
+
+ x = self.tr(x)
+ x = x.unsqueeze(3)
+ x = x.transpose(0, 3)
+ x = x.reshape(b, self.c2, w, h)
+ return x
+
+
+class Bottleneck(nn.Module):
+ # Standard bottleneck
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
+ super(Bottleneck, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class BottleneckCSP(nn.Module):
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(BottleneckCSP, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
+ self.act = nn.LeakyReLU(0.1, inplace=True)
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+
+ def forward(self, x):
+ y1 = self.cv3(self.m(self.cv1(x)))
+ y2 = self.cv2(x)
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
+
+
+class C3(nn.Module):
+ # CSP Bottleneck with 3 convolutions
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
+ super(C3, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c1, c_, 1, 1)
+ self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
+ # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
+
+ def forward(self, x):
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
+
+
+class C3TR(C3):
+ # C3 module with TransformerBlock()
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+ super().__init__(c1, c2, n, shortcut, g, e)
+ c_ = int(c2 * e)
+ self.m = TransformerBlock(c_, c_, 4, n)
+
+
+class SPP(nn.Module):
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
+ def __init__(self, c1, c2, k=(5, 9, 13)):
+ super(SPP, self).__init__()
+ c_ = c1 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, 1, 1)
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+ def forward(self, x):
+ x = self.cv1(x)
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class Focus(nn.Module):
+ # Focus wh information into c-space
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Focus, self).__init__()
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
+ # self.contract = Contract(gain=2)
+
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
+ # return self.conv(self.contract(x))
+
+
+class Contract(nn.Module):
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
+ s = self.gain
+ x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
+ return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+ def __init__(self, gain=2):
+ super().__init__()
+ self.gain = gain
+
+ def forward(self, x):
+ N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
+ s = self.gain
+ x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
+ return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
+
+
+class Concat(nn.Module):
+ # Concatenate a list of tensors along dimension
+ def __init__(self, dimension=1):
+ super(Concat, self).__init__()
+ self.d = dimension
+
+ def forward(self, x):
+ return torch.cat(x, self.d)
+
+
+class NMS(nn.Module):
+ # Non-Maximum Suppression (NMS) module
+ conf = 0.25 # confidence threshold
+ iou = 0.45 # IoU threshold
+ classes = None # (optional list) filter by class
+ max_det = 1000 # maximum number of detections per image
+
+ def __init__(self):
+ super(NMS, self).__init__()
+
+ def forward(self, x):
+ return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)
+
+
+class AutoShape(nn.Module):
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+ conf = 0.25 # NMS confidence threshold
+ iou = 0.45 # NMS IoU threshold
+ classes = None # (optional list) filter by class
+ max_det = 1000 # maximum number of detections per image
+
+ def __init__(self, model):
+ super(AutoShape, self).__init__()
+ self.model = model.eval()
+
+ def autoshape(self):
+ print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape()
+ return self
+
+ @torch.no_grad()
+ def forward(self, imgs, size=640, augment=False, profile=False):
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
+ # filename: imgs = 'data/images/zidane.jpg'
+ # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
+ # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
+ # numpy: = np.zeros((640,1280,3)) # HWC
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
+
+ t = [time_synchronized()]
+ p = next(self.model.parameters()) # for device and type
+ if isinstance(imgs, torch.Tensor): # torch
+ with amp.autocast(enabled=p.device.type != 'cpu'):
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
+
+ # Pre-process
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
+ for i, im in enumerate(imgs):
+ f = f'image{i}' # filename
+ if isinstance(im, str): # filename or uri
+ im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
+ elif isinstance(im, Image.Image): # PIL Image
+ im, f = np.asarray(im), getattr(im, 'filename', f) or f
+ files.append(Path(f).with_suffix('.jpg').name)
+ if im.shape[0] < 5: # image in CHW
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
+ s = im.shape[:2] # HWC
+ shape0.append(s) # image shape
+ g = (size / max(s)) # gain
+ shape1.append([y * g for y in s])
+ imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
+ t.append(time_synchronized())
+
+ with amp.autocast(enabled=p.device.type != 'cpu'):
+ # Inference
+ y = self.model(x, augment, profile)[0] # forward
+ t.append(time_synchronized())
+
+ # Post-process
+ y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS
+ for i in range(n):
+ scale_coords(shape1, y[i][:, :4], shape0[i])
+
+ t.append(time_synchronized())
+ return Detections(imgs, y, files, t, self.names, x.shape)
+
+
+class Detections:
+ # detections class for YOLOv5 inference results
+ def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
+ super(Detections, self).__init__()
+ d = pred[0].device # device
+ gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
+ self.imgs = imgs # list of images as numpy arrays
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
+ self.names = names # class names
+ self.files = files # image filenames
+ self.xyxy = pred # xyxy pixels
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
+ self.n = len(self.pred) # number of images (batch size)
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
+ self.s = shape # inference BCHW shape
+
+ def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
+ for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
+ str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '
+ if pred is not None:
+ for c in pred[:, -1].unique():
+ n = (pred[:, -1] == c).sum() # detections per class
+ str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
+ if show or save or render or crop:
+ for *box, conf, cls in pred: # xyxy, confidence, class
+ label = f'{self.names[int(cls)]} {conf:.2f}'
+ if crop:
+ save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i])
+ else: # all others
+ plot_one_box(box, im, label=label, color=colors(cls))
+
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
+ if pprint:
+ print(str.rstrip(', '))
+ if show:
+ im.show(self.files[i]) # show
+ if save:
+ f = self.files[i]
+ im.save(save_dir / f) # save
+ print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
+ if render:
+ self.imgs[i] = np.asarray(im)
+
+ def print(self):
+ self.display(pprint=True) # print results
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
+
+ def show(self):
+ self.display(show=True) # show results
+
+ def save(self, save_dir='runs/hub/exp'):
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
+ self.display(save=True, save_dir=save_dir) # save results
+
+ def crop(self, save_dir='runs/hub/exp'):
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir
+ self.display(crop=True, save_dir=save_dir) # crop results
+ print(f'Saved results to {save_dir}\n')
+
+ def render(self):
+ self.display(render=True) # render results
+ return self.imgs
+
+ def pandas(self):
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
+ new = copy(self) # return copy
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+ return new
+
+ def tolist(self):
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
+ for d in x:
+ for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
+ return x
+
+ def __len__(self):
+ return self.n
+
+
+class Classify(nn.Module):
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
+ super(Classify, self).__init__()
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
+ self.flat = nn.Flatten()
+
+ def forward(self, x):
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
diff --git a/src/Yolo/models/experimental.py b/src/Yolo/models/experimental.py
new file mode 100644
index 0000000..afa7879
--- /dev/null
+++ b/src/Yolo/models/experimental.py
@@ -0,0 +1,137 @@
+# YOLOv5 experimental modules
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from models.common import Conv, DWConv
+from utils.google_utils import attempt_download
+
+
+class CrossConv(nn.Module):
+ # Cross Convolution Downsample
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
+ super(CrossConv, self).__init__()
+ c_ = int(c2 * e) # hidden channels
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+ self.add = shortcut and c1 == c2
+
+ def forward(self, x):
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Sum(nn.Module):
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+ def __init__(self, n, weight=False): # n: number of inputs
+ super(Sum, self).__init__()
+ self.weight = weight # apply weights boolean
+ self.iter = range(n - 1) # iter object
+ if weight:
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
+
+ def forward(self, x):
+ y = x[0] # no weight
+ if self.weight:
+ w = torch.sigmoid(self.w) * 2
+ for i in self.iter:
+ y = y + x[i + 1] * w[i]
+ else:
+ for i in self.iter:
+ y = y + x[i + 1]
+ return y
+
+
+class GhostConv(nn.Module):
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
+ super(GhostConv, self).__init__()
+ c_ = c2 // 2 # hidden channels
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
+
+ def forward(self, x):
+ y = self.cv1(x)
+ return torch.cat([y, self.cv2(y)], 1)
+
+
+class GhostBottleneck(nn.Module):
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
+ super(GhostBottleneck, self).__init__()
+ c_ = c2 // 2
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
+
+ def forward(self, x):
+ return self.conv(x) + self.shortcut(x)
+
+
+class MixConv2d(nn.Module):
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
+ super(MixConv2d, self).__init__()
+ groups = len(k)
+ if equal_ch: # equal c_ per group
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
+ else: # equal weight.numel() per group
+ b = [c2] + [0] * groups
+ a = np.eye(groups + 1, groups, k=-1)
+ a -= np.roll(a, 1, axis=1)
+ a *= np.array(k) ** 2
+ a[0] = 1
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
+
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
+ self.bn = nn.BatchNorm2d(c2)
+ self.act = nn.LeakyReLU(0.1, inplace=True)
+
+ def forward(self, x):
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+ # Ensemble of models
+ def __init__(self):
+ super(Ensemble, self).__init__()
+
+ def forward(self, x, augment=False):
+ y = []
+ for module in self:
+ y.append(module(x, augment)[0])
+ # y = torch.stack(y).max(0)[0] # max ensemble
+ # y = torch.stack(y).mean(0) # mean ensemble
+ y = torch.cat(y, 1) # nms ensemble
+ return y, None # inference, train output
+
+
+def attempt_load(weights, map_location=None, inplace=True):
+ from models.yolo import Detect, Model
+
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+ model = Ensemble()
+ for w in weights if isinstance(weights, list) else [weights]:
+ attempt_download(w)
+ ckpt = torch.load(w, map_location=map_location) # load
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
+
+ # Compatibility updates
+ for m in model.modules():
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
+ m.inplace = inplace # pytorch 1.7.0 compatibility
+ elif type(m) is Conv:
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+
+ if len(model) == 1:
+ return model[-1] # return model
+ else:
+ print(f'Ensemble created with {weights}\n')
+ for k in ['names']:
+ setattr(model, k, getattr(model[-1], k))
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
+ return model # return ensemble
diff --git a/src/Yolo/models/export.py b/src/Yolo/models/export.py
new file mode 100644
index 0000000..65721f6
--- /dev/null
+++ b/src/Yolo/models/export.py
@@ -0,0 +1,143 @@
+"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats
+
+Usage:
+ $ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1
+"""
+
+import argparse
+import sys
+import time
+from pathlib import Path
+
+sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
+
+import torch
+import torch.nn as nn
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+import models
+from models.experimental import attempt_load
+from utils.activations import Hardswish, SiLU
+from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging
+from utils.torch_utils import select_device
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats')
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+ parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
+ parser.add_argument('--train', action='store_true', help='model.train() mode')
+ parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only
+ parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only
+ parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only
+ opt = parser.parse_args()
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
+ opt.include = [x.lower() for x in opt.include]
+ print(opt)
+ set_logging()
+ t = time.time()
+
+ # Load PyTorch model
+ device = select_device(opt.device)
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
+ labels = model.names
+
+ # Checks
+ gs = int(max(model.stride)) # grid size (max stride)
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
+ assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0'
+
+ # Input
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
+
+ # Update model
+ if opt.half:
+ img, model = img.half(), model.half() # to FP16
+ if opt.train:
+ model.train() # training mode (no grid construction in Detect layer)
+ for k, m in model.named_modules():
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
+ if isinstance(m.act, nn.Hardswish):
+ m.act = Hardswish()
+ elif isinstance(m.act, nn.SiLU):
+ m.act = SiLU()
+ elif isinstance(m, models.yolo.Detect):
+ m.inplace = opt.inplace
+ m.onnx_dynamic = opt.dynamic
+ # m.forward = m.forward_export # assign forward (optional)
+
+ for _ in range(2):
+ y = model(img) # dry runs
+ print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)")
+
+ # TorchScript export -----------------------------------------------------------------------------------------------
+ if 'torchscript' in opt.include or 'coreml' in opt.include:
+ prefix = colorstr('TorchScript:')
+ try:
+ print(f'\n{prefix} starting export with torch {torch.__version__}...')
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
+ ts = torch.jit.trace(model, img, strict=False)
+ (optimize_for_mobile(ts) if opt.optimize else ts).save(f)
+ print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+ except Exception as e:
+ print(f'{prefix} export failure: {e}')
+
+ # ONNX export ------------------------------------------------------------------------------------------------------
+ if 'onnx' in opt.include:
+ prefix = colorstr('ONNX:')
+ try:
+ import onnx
+
+ print(f'{prefix} starting export with onnx {onnx.__version__}...')
+ f = opt.weights.replace('.pt', '.onnx') # filename
+ torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'],
+ dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
+
+ # Checks
+ model_onnx = onnx.load(f) # load onnx model
+ onnx.checker.check_model(model_onnx) # check onnx model
+ # print(onnx.helper.printable_graph(model_onnx.graph)) # print
+
+ # Simplify
+ if opt.simplify:
+ try:
+ check_requirements(['onnx-simplifier'])
+ import onnxsim
+
+ print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
+ model_onnx, check = onnxsim.simplify(
+ model_onnx,
+ dynamic_input_shape=opt.dynamic,
+ input_shapes={'images': list(img.shape)} if opt.dynamic else None)
+ assert check, 'assert check failed'
+ onnx.save(model_onnx, f)
+ except Exception as e:
+ print(f'{prefix} simplifier failure: {e}')
+ print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+ except Exception as e:
+ print(f'{prefix} export failure: {e}')
+
+ # CoreML export ----------------------------------------------------------------------------------------------------
+ if 'coreml' in opt.include:
+ prefix = colorstr('CoreML:')
+ try:
+ import coremltools as ct
+
+ print(f'{prefix} starting export with coremltools {ct.__version__}...')
+ assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`'
+ model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
+ model.save(f)
+ print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+ except Exception as e:
+ print(f'{prefix} export failure: {e}')
+
+ # Finish
+ print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.')
diff --git a/src/Yolo/models/hub/anchors.yaml b/src/Yolo/models/hub/anchors.yaml
new file mode 100644
index 0000000..a07a4dc
--- /dev/null
+++ b/src/Yolo/models/hub/anchors.yaml
@@ -0,0 +1,58 @@
+# Default YOLOv5 anchors for COCO data
+
+
+# P5 -------------------------------------------------------------------------------------------------------------------
+# P5-640:
+anchors_p5_640:
+ - [ 10,13, 16,30, 33,23 ] # P3/8
+ - [ 30,61, 62,45, 59,119 ] # P4/16
+ - [ 116,90, 156,198, 373,326 ] # P5/32
+
+
+# P6 -------------------------------------------------------------------------------------------------------------------
+# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
+anchors_p6_640:
+ - [ 9,11, 21,19, 17,41 ] # P3/8
+ - [ 43,32, 39,70, 86,64 ] # P4/16
+ - [ 65,131, 134,130, 120,265 ] # P5/32
+ - [ 282,180, 247,354, 512,387 ] # P6/64
+
+# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
+anchors_p6_1280:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
+anchors_p6_1920:
+ - [ 28,41, 67,59, 57,141 ] # P3/8
+ - [ 144,103, 129,227, 270,205 ] # P4/16
+ - [ 209,452, 455,396, 358,812 ] # P5/32
+ - [ 653,922, 1109,570, 1387,1187 ] # P6/64
+
+
+# P7 -------------------------------------------------------------------------------------------------------------------
+# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
+anchors_p7_640:
+ - [ 11,11, 13,30, 29,20 ] # P3/8
+ - [ 30,46, 61,38, 39,92 ] # P4/16
+ - [ 78,80, 146,66, 79,163 ] # P5/32
+ - [ 149,150, 321,143, 157,303 ] # P6/64
+ - [ 257,402, 359,290, 524,372 ] # P7/128
+
+# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
+anchors_p7_1280:
+ - [ 19,22, 54,36, 32,77 ] # P3/8
+ - [ 70,83, 138,71, 75,173 ] # P4/16
+ - [ 165,159, 148,334, 375,151 ] # P5/32
+ - [ 334,317, 251,626, 499,474 ] # P6/64
+ - [ 750,326, 534,814, 1079,818 ] # P7/128
+
+# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
+anchors_p7_1920:
+ - [ 29,34, 81,55, 47,115 ] # P3/8
+ - [ 105,124, 207,107, 113,259 ] # P4/16
+ - [ 247,238, 222,500, 563,227 ] # P5/32
+ - [ 501,476, 376,939, 749,711 ] # P6/64
+ - [ 1126,489, 801,1222, 1618,1227 ] # P7/128
diff --git a/src/Yolo/models/hub/yolov3-spp.yaml b/src/Yolo/models/hub/yolov3-spp.yaml
new file mode 100644
index 0000000..38dcc44
--- /dev/null
+++ b/src/Yolo/models/hub/yolov3-spp.yaml
@@ -0,0 +1,51 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3-SPP head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, SPP, [512, [5, 9, 13]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov3-tiny.yaml b/src/Yolo/models/hub/yolov3-tiny.yaml
new file mode 100644
index 0000000..ff7638c
--- /dev/null
+++ b/src/Yolo/models/hub/yolov3-tiny.yaml
@@ -0,0 +1,41 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,14, 23,27, 37,58] # P4/16
+ - [81,82, 135,169, 344,319] # P5/32
+
+# YOLOv3-tiny backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [16, 3, 1]], # 0
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
+ [-1, 1, Conv, [32, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
+ [-1, 1, Conv, [64, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
+ [-1, 1, Conv, [128, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
+ [-1, 1, Conv, [256, 3, 1]],
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
+ [-1, 1, Conv, [512, 3, 1]],
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
+ ]
+
+# YOLOv3-tiny head
+head:
+ [[-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
+
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov3.yaml b/src/Yolo/models/hub/yolov3.yaml
new file mode 100644
index 0000000..f2e7613
--- /dev/null
+++ b/src/Yolo/models/hub/yolov3.yaml
@@ -0,0 +1,51 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# darknet53 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Conv, [32, 3, 1]], # 0
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
+ [-1, 1, Bottleneck, [64]],
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
+ [-1, 2, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
+ [-1, 8, Bottleneck, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
+ [-1, 8, Bottleneck, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
+ [-1, 4, Bottleneck, [1024]], # 10
+ ]
+
+# YOLOv3 head
+head:
+ [[-1, 1, Bottleneck, [1024, False]],
+ [-1, 1, Conv, [512, [1, 1]]],
+ [-1, 1, Conv, [1024, 3, 1]],
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
+
+ [-2, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Bottleneck, [512, False]],
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
+
+ [-2, 1, Conv, [128, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Bottleneck, [256, False]],
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
+
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov5-fpn.yaml b/src/Yolo/models/hub/yolov5-fpn.yaml
new file mode 100644
index 0000000..e772bff
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5-fpn.yaml
@@ -0,0 +1,42 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, Bottleneck, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, BottleneckCSP, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, BottleneckCSP, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 6, BottleneckCSP, [1024]], # 9
+ ]
+
+# YOLOv5 FPN head
+head:
+ [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
+
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 1, Conv, [512, 1, 1]],
+ [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
+
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
+
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov5-p2.yaml b/src/Yolo/models/hub/yolov5-p2.yaml
new file mode 100644
index 0000000..0633a90
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5-p2.yaml
@@ -0,0 +1,54 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors: 3
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
+ [ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 9
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 13
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
+
+ [ -1, 1, Conv, [ 128, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
+ [ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
+
+ [ -1, 1, Conv, [ 128, 3, 2 ] ],
+ [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
+ [ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
+
+ [ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov5-p6.yaml b/src/Yolo/models/hub/yolov5-p6.yaml
new file mode 100644
index 0000000..3728a11
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5-p6.yaml
@@ -0,0 +1,56 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors: 3
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 11
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 15
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 19
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
+
+ [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/src/Yolo/models/hub/yolov5-p7.yaml b/src/Yolo/models/hub/yolov5-p7.yaml
new file mode 100644
index 0000000..ca8f849
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5-p7.yaml
@@ -0,0 +1,67 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors: 3
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 3, C3, [ 1024 ] ],
+ [ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
+ [ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
+ [ -1, 3, C3, [ 1280, False ] ], # 13
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
+ [ -1, 3, C3, [ 1024, False ] ], # 17
+
+ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 21
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 25
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
+
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ],
+ [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
+ [ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
+
+ [ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
+ ]
diff --git a/src/Yolo/models/hub/yolov5-panet.yaml b/src/Yolo/models/hub/yolov5-panet.yaml
new file mode 100644
index 0000000..340f95a
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5-panet.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, BottleneckCSP, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, BottleneckCSP, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, BottleneckCSP, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
+ ]
+
+# YOLOv5 PANet head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, BottleneckCSP, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov5l6.yaml b/src/Yolo/models/hub/yolov5l6.yaml
new file mode 100644
index 0000000..11298b0
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5l6.yaml
@@ -0,0 +1,60 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 11
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 15
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 19
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
+
+ [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/src/Yolo/models/hub/yolov5m6.yaml b/src/Yolo/models/hub/yolov5m6.yaml
new file mode 100644
index 0000000..48afc86
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5m6.yaml
@@ -0,0 +1,60 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 0.67 # model depth multiple
+width_multiple: 0.75 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 11
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 15
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 19
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
+
+ [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/src/Yolo/models/hub/yolov5s-transformer.yaml b/src/Yolo/models/hub/yolov5s-transformer.yaml
new file mode 100644
index 0000000..f2d6667
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5s-transformer.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/hub/yolov5s6.yaml b/src/Yolo/models/hub/yolov5s6.yaml
new file mode 100644
index 0000000..1df577a
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5s6.yaml
@@ -0,0 +1,60 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 11
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 15
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 19
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
+
+ [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/src/Yolo/models/hub/yolov5x6.yaml b/src/Yolo/models/hub/yolov5x6.yaml
new file mode 100644
index 0000000..5ebc021
--- /dev/null
+++ b/src/Yolo/models/hub/yolov5x6.yaml
@@ -0,0 +1,60 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+
+# anchors
+anchors:
+ - [ 19,27, 44,40, 38,94 ] # P3/8
+ - [ 96,68, 86,152, 180,137 ] # P4/16
+ - [ 140,301, 303,264, 238,542 ] # P5/32
+ - [ 436,615, 739,380, 925,792 ] # P6/64
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
+ [ -1, 3, C3, [ 128 ] ],
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
+ [ -1, 9, C3, [ 256 ] ],
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
+ [ -1, 9, C3, [ 512 ] ],
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
+ [ -1, 3, C3, [ 768 ] ],
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
+ [ -1, 3, C3, [ 1024, False ] ], # 11
+ ]
+
+# YOLOv5 head
+head:
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
+ [ -1, 3, C3, [ 768, False ] ], # 15
+
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
+ [ -1, 3, C3, [ 512, False ] ], # 19
+
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
+ [ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
+
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
+ [ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
+ [ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
+
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
+ [ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
+ [ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
+
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
+ [ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
+ [ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
+
+ [ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
+ ]
diff --git a/src/Yolo/models/yolo.py b/src/Yolo/models/yolo.py
new file mode 100644
index 0000000..06b8003
--- /dev/null
+++ b/src/Yolo/models/yolo.py
@@ -0,0 +1,304 @@
+# YOLOv5 YOLO-specific modules
+
+import argparse
+import logging
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories
+logger = logging.getLogger(__name__)
+
+from models.common import *
+from models.experimental import *
+from utils.autoanchor import check_anchor_order
+from utils.general import make_divisible, check_file, set_logging
+from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
+ select_device, copy_attr
+
+try:
+ import thop # for FLOPS computation
+except ImportError:
+ thop = None
+
+
+class Detect(nn.Module):
+ stride = None # strides computed during build
+ onnx_dynamic = False # ONNX export parameter
+
+ def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
+ super(Detect, self).__init__()
+ self.nc = nc # number of classes
+ self.no = nc + 5 # number of outputs per anchor
+ self.nl = len(anchors) # number of detection layers
+ self.na = len(anchors[0]) // 2 # number of anchors
+ self.grid = [torch.zeros(1)] * self.nl # init grid
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
+ self.register_buffer('anchors', a) # shape(nl,na,2)
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
+ self.inplace = inplace # use in-place ops (e.g. slice assignment)
+
+ def forward(self, x):
+ # x = x.copy() # for profiling
+ z = [] # inference output
+ for i in range(self.nl):
+ x[i] = self.m[i](x[i]) # conv
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+ if not self.training: # inference
+ if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
+
+ y = x[i].sigmoid()
+ if self.inplace:
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
+ else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
+ xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
+ wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
+ z.append(y.view(bs, -1, self.no))
+
+ return x if self.training else (torch.cat(z, 1), x)
+
+ @staticmethod
+ def _make_grid(nx=20, ny=20):
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+
+
+class Model(nn.Module):
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
+ super(Model, self).__init__()
+ if isinstance(cfg, dict):
+ self.yaml = cfg # model dict
+ else: # is *.yaml
+ import yaml # for torch hub
+ self.yaml_file = Path(cfg).name
+ with open(cfg) as f:
+ self.yaml = yaml.safe_load(f) # model dict
+
+ # Define model
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
+ if nc and nc != self.yaml['nc']:
+ logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+ self.yaml['nc'] = nc # override yaml value
+ if anchors:
+ logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
+ self.yaml['anchors'] = round(anchors) # override yaml value
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
+ self.inplace = self.yaml.get('inplace', True)
+ # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
+
+ # Build strides, anchors
+ m = self.model[-1] # Detect()
+ if isinstance(m, Detect):
+ s = 256 # 2x min stride
+ m.inplace = self.inplace
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
+ m.anchors /= m.stride.view(-1, 1, 1)
+ check_anchor_order(m)
+ self.stride = m.stride
+ self._initialize_biases() # only run once
+ # logger.info('Strides: %s' % m.stride.tolist())
+
+ # Init weights, biases
+ initialize_weights(self)
+ self.info()
+ logger.info('')
+
+ def forward(self, x, augment=False, profile=False):
+ if augment:
+ return self.forward_augment(x) # augmented inference, None
+ else:
+ return self.forward_once(x, profile) # single-scale inference, train
+
+ def forward_augment(self, x):
+ img_size = x.shape[-2:] # height, width
+ s = [1, 0.83, 0.67] # scales
+ f = [None, 3, None] # flips (2-ud, 3-lr)
+ y = [] # outputs
+ for si, fi in zip(s, f):
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+ yi = self.forward_once(xi)[0] # forward
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
+ yi = self._descale_pred(yi, fi, si, img_size)
+ y.append(yi)
+ return torch.cat(y, 1), None # augmented inference, train
+
+ def forward_once(self, x, profile=False):
+ y, dt = [], [] # outputs
+ for m in self.model:
+ if m.f != -1: # if not from previous layer
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
+
+ if profile:
+ o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
+ t = time_synchronized()
+ for _ in range(10):
+ _ = m(x)
+ dt.append((time_synchronized() - t) * 100)
+ if m == self.model[0]:
+ logger.info(f"{'time (ms)':>10s} {'GFLOPS':>10s} {'params':>10s} {'module'}")
+ logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
+
+ x = m(x) # run
+ y.append(x if m.i in self.save else None) # save output
+
+ if profile:
+ logger.info('%.1fms total' % sum(dt))
+ return x
+
+ def _descale_pred(self, p, flips, scale, img_size):
+ # de-scale predictions following augmented inference (inverse operation)
+ if self.inplace:
+ p[..., :4] /= scale # de-scale
+ if flips == 2:
+ p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
+ elif flips == 3:
+ p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
+ else:
+ x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
+ if flips == 2:
+ y = img_size[0] - y # de-flip ud
+ elif flips == 3:
+ x = img_size[1] - x # de-flip lr
+ p = torch.cat((x, y, wh, p[..., 4:]), -1)
+ return p
+
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
+ # https://arxiv.org/abs/1708.02002 section 3.3
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+ m = self.model[-1] # Detect() module
+ for mi, s in zip(m.m, m.stride): # from
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+ def _print_biases(self):
+ m = self.model[-1] # Detect() module
+ for mi in m.m: # from
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
+ logger.info(
+ ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
+
+ # def _print_weights(self):
+ # for m in self.model.modules():
+ # if type(m) is Bottleneck:
+ # logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
+
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
+ logger.info('Fusing layers... ')
+ for m in self.model.modules():
+ if type(m) is Conv and hasattr(m, 'bn'):
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
+ delattr(m, 'bn') # remove batchnorm
+ m.forward = m.fuseforward # update forward
+ self.info()
+ return self
+
+ def nms(self, mode=True): # add or remove NMS module
+ present = type(self.model[-1]) is NMS # last layer is NMS
+ if mode and not present:
+ logger.info('Adding NMS... ')
+ m = NMS() # module
+ m.f = -1 # from
+ m.i = self.model[-1].i + 1 # index
+ self.model.add_module(name='%s' % m.i, module=m) # add
+ self.eval()
+ elif not mode and present:
+ logger.info('Removing NMS... ')
+ self.model = self.model[:-1] # remove
+ return self
+
+ def autoshape(self): # add AutoShape module
+ logger.info('Adding AutoShape... ')
+ m = AutoShape(self) # wrap model
+ copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
+ return m
+
+ def info(self, verbose=False, img_size=640): # print model information
+ model_info(self, verbose, img_size)
+
+
+def parse_model(d, ch): # model_dict, input_channels(3)
+ logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
+
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
+ m = eval(m) if isinstance(m, str) else m # eval strings
+ for j, a in enumerate(args):
+ try:
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
+ except:
+ pass
+
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
+ if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
+ C3, C3TR]:
+ c1, c2 = ch[f], args[0]
+ if c2 != no: # if not output
+ c2 = make_divisible(c2 * gw, 8)
+
+ args = [c1, c2, *args[1:]]
+ if m in [BottleneckCSP, C3, C3TR]:
+ args.insert(2, n) # number of repeats
+ n = 1
+ elif m is nn.BatchNorm2d:
+ args = [ch[f]]
+ elif m is Concat:
+ c2 = sum([ch[x] for x in f])
+ elif m is Detect:
+ args.append([ch[x] for x in f])
+ if isinstance(args[1], int): # number of anchors
+ args[1] = [list(range(args[1] * 2))] * len(f)
+ elif m is Contract:
+ c2 = ch[f] * args[0] ** 2
+ elif m is Expand:
+ c2 = ch[f] // args[0] ** 2
+ else:
+ c2 = ch[f]
+
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
+ t = str(m)[8:-2].replace('__main__.', '') # module type
+ np = sum([x.numel() for x in m_.parameters()]) # number params
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
+ logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
+ layers.append(m_)
+ if i == 0:
+ ch = []
+ ch.append(c2)
+ return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+ opt = parser.parse_args()
+ opt.cfg = check_file(opt.cfg) # check file
+ set_logging()
+ device = select_device(opt.device)
+
+ # Create model
+ model = Model(opt.cfg).to(device)
+ model.train()
+
+ # Profile
+ # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device)
+ # y = model(img, profile=True)
+
+ # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
+ # from torch.utils.tensorboard import SummaryWriter
+ # tb_writer = SummaryWriter('.')
+ # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
+ # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph
+ # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
diff --git a/src/Yolo/models/yolov5l.yaml b/src/Yolo/models/yolov5l.yaml
new file mode 100644
index 0000000..71ebf86
--- /dev/null
+++ b/src/Yolo/models/yolov5l.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.0 # model depth multiple
+width_multiple: 1.0 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3, [1024, False]], # 9
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/yolov5m.yaml b/src/Yolo/models/yolov5m.yaml
new file mode 100644
index 0000000..3c749c9
--- /dev/null
+++ b/src/Yolo/models/yolov5m.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 0.67 # model depth multiple
+width_multiple: 0.75 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3, [1024, False]], # 9
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/yolov5s.yaml b/src/Yolo/models/yolov5s.yaml
new file mode 100644
index 0000000..aca669d
--- /dev/null
+++ b/src/Yolo/models/yolov5s.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 0.33 # model depth multiple
+width_multiple: 0.50 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3, [1024, False]], # 9
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/models/yolov5x.yaml b/src/Yolo/models/yolov5x.yaml
new file mode 100644
index 0000000..d3babdf
--- /dev/null
+++ b/src/Yolo/models/yolov5x.yaml
@@ -0,0 +1,48 @@
+# parameters
+nc: 80 # number of classes
+depth_multiple: 1.33 # model depth multiple
+width_multiple: 1.25 # layer channel multiple
+
+# anchors
+anchors:
+ - [10,13, 16,30, 33,23] # P3/8
+ - [30,61, 62,45, 59,119] # P4/16
+ - [116,90, 156,198, 373,326] # P5/32
+
+# YOLOv5 backbone
+backbone:
+ # [from, number, module, args]
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
+ [-1, 3, C3, [128]],
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
+ [-1, 9, C3, [256]],
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
+ [-1, 9, C3, [512]],
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
+ [-1, 3, C3, [1024, False]], # 9
+ ]
+
+# YOLOv5 head
+head:
+ [[-1, 1, Conv, [512, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
+ [-1, 3, C3, [512, False]], # 13
+
+ [-1, 1, Conv, [256, 1, 1]],
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
+
+ [-1, 1, Conv, [256, 3, 2]],
+ [[-1, 14], 1, Concat, [1]], # cat head P4
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
+
+ [-1, 1, Conv, [512, 3, 2]],
+ [[-1, 10], 1, Concat, [1]], # cat head P5
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
+
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
+ ]
diff --git a/src/Yolo/requirements.txt b/src/Yolo/requirements.txt
new file mode 100644
index 0000000..e82bf6f
--- /dev/null
+++ b/src/Yolo/requirements.txt
@@ -0,0 +1,15 @@
+certifi==2024.2.2
+imutils==0.5.4
+numpy==1.26.4
+pandas==2.2.1
+requests==2.31.0
+opencv-python==4.9.0.80
+matplotlib==3.8.3
+seaborn==0.13.2
+tqdm==4.66.2
+torch==2.2.1
+torchvision==0.17.1
+torch_optimizer==0.3.0
+pyyaml==6.0.1
+easydict==1.12
+scipy==1.12.0
diff --git a/src/Yolo/tracker.py b/src/Yolo/tracker.py
new file mode 100644
index 0000000..0cff5bd
--- /dev/null
+++ b/src/Yolo/tracker.py
@@ -0,0 +1,92 @@
+from deep_sort.utils.parser import get_config
+from deep_sort.deep_sort import DeepSort
+import torch
+import cv2
+
+palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
+cfg = get_config()
+cfg.merge_from_file("deep_sort/configs/deep_sort.yaml")
+deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
+ max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
+ nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
+ max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
+ use_cuda=True)
+
+
+def plot_bboxes(image, bboxes, line_thickness=None):
+ # Plots one bounding box on image img
+ tl = line_thickness or round(
+ 0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness
+ for (x1, y1, x2, y2, cls_id, pos_id) in bboxes:
+ if cls_id in ['person']:
+ color = (0, 0, 255)
+ else:
+ color = (0, 255, 0)
+ c1, c2 = (x1, y1), (x2, y2)
+ cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
+ tf = max(tl - 1, 1) # font thickness
+ t_size = cv2.getTextSize(cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
+ cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled
+ cv2.putText(image, '{} ID-{}'.format(cls_id, pos_id), (c1[0], c1[1] - 2), 0, tl / 3,
+ [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
+
+ return image
+
+
+def update_tracker(target_detector, image):
+
+ new_faces = []
+ _, bboxes = target_detector.detect(image)
+
+ bbox_xywh = []
+ confs = []
+ clss = []
+
+ for x1, y1, x2, y2, cls_id, conf in bboxes:
+
+ obj = [
+ int((x1+x2)/2), int((y1+y2)/2),
+ x2-x1, y2-y1
+ ]
+ bbox_xywh.append(obj)
+ confs.append(conf)
+ clss.append(cls_id)
+
+ xywhs = torch.Tensor(bbox_xywh)
+ confss = torch.Tensor(confs)
+
+ outputs = deepsort.update(xywhs, confss, clss, image)
+
+ bboxes2draw = []
+ face_bboxes = []
+ current_ids = []
+ for value in list(outputs):
+ x1, y1, x2, y2, cls_, track_id = value
+ bboxes2draw.append(
+ (x1, y1, x2, y2, cls_, track_id)
+ )
+ current_ids.append(track_id)
+ if cls_ == 'face':
+ if not track_id in target_detector.faceTracker:
+ target_detector.faceTracker[track_id] = 0
+ face = image[y1:y2, x1:x2]
+ new_faces.append((face, track_id))
+ face_bboxes.append(
+ (x1, y1, x2, y2)
+ )
+
+ ids2delete = []
+ for history_id in target_detector.faceTracker:
+ if not history_id in current_ids:
+ target_detector.faceTracker[history_id] -= 1
+ if target_detector.faceTracker[history_id] < -5:
+ ids2delete.append(history_id)
+
+ for ids in ids2delete:
+ target_detector.faceTracker.pop(ids)
+ print('-[INFO] Delete track id:', ids)
+
+ image = plot_bboxes(image, bboxes2draw)
+
+ return image, new_faces, face_bboxes
diff --git a/src/Yolo/utils/BaseDetector.py b/src/Yolo/utils/BaseDetector.py
new file mode 100644
index 0000000..6ec175e
--- /dev/null
+++ b/src/Yolo/utils/BaseDetector.py
@@ -0,0 +1,50 @@
+from tracker import update_tracker
+import cv2
+
+
+class baseDet(object):
+
+ def __init__(self):
+
+ self.img_size = 640
+ self.threshold = 0.3
+ self.stride = 1
+
+ def build_config(self):
+
+ self.faceTracker = {}
+ self.faceClasses = {}
+ self.faceLocation1 = {}
+ self.faceLocation2 = {}
+ self.frameCounter = 0
+ self.currentCarID = 0
+ self.recorded = []
+
+ self.font = cv2.FONT_HERSHEY_SIMPLEX
+
+ def feedCap(self, im):
+
+ retDict = {
+ 'frame': None,
+ 'faces': None,
+ 'list_of_ids': None,
+ 'face_bboxes': []
+ }
+ self.frameCounter += 1
+
+ im, faces, face_bboxes = update_tracker(self, im)
+
+ retDict['frame'] = im
+ retDict['faces'] = faces
+ retDict['face_bboxes'] = face_bboxes
+
+ return retDict
+
+ def init_model(self):
+ raise EOFError("Undefined model type.")
+
+ def preprocess(self):
+ raise EOFError("Undefined model type.")
+
+ def detect(self):
+ raise EOFError("Undefined model type.")
diff --git a/src/Yolo/utils/__init__.py b/src/Yolo/utils/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/utils/activations.py b/src/Yolo/utils/activations.py
new file mode 100644
index 0000000..92a3b5e
--- /dev/null
+++ b/src/Yolo/utils/activations.py
@@ -0,0 +1,98 @@
+# Activation functions
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
+class SiLU(nn.Module): # export-friendly version of nn.SiLU()
+ @staticmethod
+ def forward(x):
+ return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
+ @staticmethod
+ def forward(x):
+ # return x * F.hardsigmoid(x) # for torchscript and CoreML
+ return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
+
+
+# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
+class Mish(nn.Module):
+ @staticmethod
+ def forward(x):
+ return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+ class F(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x):
+ ctx.save_for_backward(x)
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ x = ctx.saved_tensors[0]
+ sx = torch.sigmoid(x)
+ fx = F.softplus(x).tanh()
+ return grad_output * (fx + x * sx * (1 - fx * fx))
+
+ def forward(self, x):
+ return self.F.apply(x)
+
+
+# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
+class FReLU(nn.Module):
+ def __init__(self, c1, k=3): # ch_in, kernel
+ super().__init__()
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+ self.bn = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ return torch.max(x, self.bn(self.conv(x)))
+
+
+# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
+class AconC(nn.Module):
+ r""" ACON activation (activate or not).
+ AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+ according to "Activate or Not: Learning Customized Activation" .
+ """
+
+ def __init__(self, c1):
+ super().__init__()
+ self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
+
+ def forward(self, x):
+ dpx = (self.p1 - self.p2) * x
+ return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
+
+
+class MetaAconC(nn.Module):
+ r""" ACON activation (activate or not).
+ MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
+ according to "Activate or Not: Learning Customized Activation" .
+ """
+
+ def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
+ super().__init__()
+ c2 = max(r, c1 // r)
+ self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+ self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
+ self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
+ # self.bn1 = nn.BatchNorm2d(c2)
+ # self.bn2 = nn.BatchNorm2d(c1)
+
+ def forward(self, x):
+ y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
+ # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
+ # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
+ beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
+ dpx = (self.p1 - self.p2) * x
+ return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/src/Yolo/utils/autoanchor.py b/src/Yolo/utils/autoanchor.py
new file mode 100644
index 0000000..87dc394
--- /dev/null
+++ b/src/Yolo/utils/autoanchor.py
@@ -0,0 +1,161 @@
+# Auto-anchor utils
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils.general import colorstr
+
+
+def check_anchor_order(m):
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
+ da = a[-1] - a[0] # delta a
+ ds = m.stride[-1] - m.stride[0] # delta s
+ if da.sign() != ds.sign(): # same order
+ print('Reversing anchor order')
+ m.anchors[:] = m.anchors.flip(0)
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
+
+
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+ # Check anchor fit to data, recompute if necessary
+ prefix = colorstr('autoanchor: ')
+ print(f'\n{prefix}Analyzing anchors... ', end='')
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
+
+ def metric(k): # compute metric
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ best = x.max(1)[0] # best_x
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
+ bpr = (best > 1. / thr).float().mean() # best possible recall
+ return bpr, aat
+
+ anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
+ bpr, aat = metric(anchors)
+ print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
+ if bpr < 0.98: # threshold to recompute
+ print('. Attempting to improve anchors, please wait...')
+ na = m.anchor_grid.numel() // 2 # number of anchors
+ try:
+ anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+ except Exception as e:
+ print(f'{prefix}ERROR: {e}')
+ new_bpr = metric(anchors)[0]
+ if new_bpr > bpr: # replace anchors
+ anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+ m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
+ m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
+ check_anchor_order(m)
+ print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
+ else:
+ print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
+ print('') # newline
+
+
+def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+ """ Creates kmeans-evolved anchors from training dataset
+
+ Arguments:
+ path: path to dataset *.yaml, or a loaded dataset
+ n: number of anchors
+ img_size: image size used for training
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+ gen: generations to evolve anchors using genetic algorithm
+ verbose: print all results
+
+ Return:
+ k: kmeans evolved anchors
+
+ Usage:
+ from utils.autoanchor import *; _ = kmean_anchors()
+ """
+ from scipy.cluster.vq import kmeans
+
+ thr = 1. / thr
+ prefix = colorstr('autoanchor: ')
+
+ def metric(k, wh): # compute metrics
+ r = wh[:, None] / k[None]
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
+ return x, x.max(1)[0] # x, best_x
+
+ def anchor_fitness(k): # mutation fitness
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+ return (best * (best > thr).float()).mean() # fitness
+
+ def print_results(k):
+ k = k[np.argsort(k.prod(1))] # sort small to large
+ x, best = metric(k, wh0)
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
+ print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
+ print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
+ f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
+ for i, x in enumerate(k):
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
+ return k
+
+ if isinstance(path, str): # *.yaml file
+ with open(path) as f:
+ data_dict = yaml.safe_load(f) # model dict
+ from utils.datasets import LoadImagesAndLabels
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+ else:
+ dataset = path # dataset
+
+ # Get label wh
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
+
+ # Filter
+ i = (wh0 < 3.0).any(1).sum()
+ if i:
+ print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
+ # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
+
+ # Kmeans calculation
+ print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
+ s = wh.std(0) # sigmas for whitening
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
+ assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
+ k *= s
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
+ k = print_results(k)
+
+ # Plot
+ # k, d = [None] * 20, [None] * 20
+ # for i in tqdm(range(1, 21)):
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+ # ax = ax.ravel()
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+ # fig.savefig('wh.png', dpi=200)
+
+ # Evolve
+ npr = np.random
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
+ pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
+ for _ in pbar:
+ v = np.ones(sh)
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+ kg = (k.copy() * v).clip(min=2.0)
+ fg = anchor_fitness(kg)
+ if fg > f:
+ f, k = fg, kg.copy()
+ pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
+ if verbose:
+ print_results(k)
+
+ return print_results(k)
diff --git a/src/Yolo/utils/aws/__init__.py b/src/Yolo/utils/aws/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/utils/aws/mime.sh b/src/Yolo/utils/aws/mime.sh
new file mode 100644
index 0000000..c319a83
--- /dev/null
+++ b/src/Yolo/utils/aws/mime.sh
@@ -0,0 +1,26 @@
+# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
+# This script will run on every instance restart, not only on first start
+# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
+
+Content-Type: multipart/mixed; boundary="//"
+MIME-Version: 1.0
+
+--//
+Content-Type: text/cloud-config; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="cloud-config.txt"
+
+#cloud-config
+cloud_final_modules:
+- [scripts-user, always]
+
+--//
+Content-Type: text/x-shellscript; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="userdata.txt"
+
+#!/bin/bash
+# --- paste contents of userdata.sh here ---
+--//
diff --git a/src/Yolo/utils/aws/resume.py b/src/Yolo/utils/aws/resume.py
new file mode 100644
index 0000000..4b0d424
--- /dev/null
+++ b/src/Yolo/utils/aws/resume.py
@@ -0,0 +1,37 @@
+# Resume all interrupted trainings in yolov5/ dir including DDP trainings
+# Usage: $ python utils/aws/resume.py
+
+import os
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+
+sys.path.append('./') # to run '$ python *.py' files in subdirectories
+
+port = 0 # --master_port
+path = Path('').resolve()
+for last in path.rglob('*/**/last.pt'):
+ ckpt = torch.load(last)
+ if ckpt['optimizer'] is None:
+ continue
+
+ # Load opt.yaml
+ with open(last.parent.parent / 'opt.yaml') as f:
+ opt = yaml.safe_load(f)
+
+ # Get device count
+ d = opt['device'].split(',') # devices
+ nd = len(d) # number of devices
+ ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
+
+ if ddp: # multi-GPU
+ port += 1
+ cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
+ else: # single-GPU
+ cmd = f'python train.py --resume {last}'
+
+ cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
+ print(cmd)
+ os.system(cmd)
diff --git a/src/Yolo/utils/aws/userdata.sh b/src/Yolo/utils/aws/userdata.sh
new file mode 100644
index 0000000..5846fed
--- /dev/null
+++ b/src/Yolo/utils/aws/userdata.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
+# This script will run only once on first instance start (for a re-start script see mime.sh)
+# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
+# Use >300 GB SSD
+
+cd home/ubuntu
+if [ ! -d yolov5 ]; then
+ echo "Running first-time script." # install dependencies, download COCO, pull Docker
+ git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
+ cd yolov5
+ bash data/scripts/get_coco.sh && echo "Data done." &
+ sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
+ python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
+ wait && echo "All tasks done." # finish background tasks
+else
+ echo "Running re-start script." # resume interrupted runs
+ i=0
+ list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
+ while IFS= read -r id; do
+ ((i++))
+ echo "restarting container $i: $id"
+ sudo docker start $id
+ # sudo docker exec -it $id python train.py --resume # single-GPU
+ sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
+ done <<<"$list"
+fi
diff --git a/src/Yolo/utils/datasets.py b/src/Yolo/utils/datasets.py
new file mode 100644
index 0000000..36416b1
--- /dev/null
+++ b/src/Yolo/utils/datasets.py
@@ -0,0 +1,1067 @@
+# Dataset utils and dataloaders
+
+import glob
+import logging
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from threading import Thread
+
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+from PIL import Image, ExifTags
+from torch.utils.data import Dataset
+from tqdm import tqdm
+
+from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
+ resample_segments, clean_str
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
+logger = logging.getLogger(__name__)
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+ if ExifTags.TAGS[orientation] == 'Orientation':
+ break
+
+
+def get_hash(files):
+ # Returns a single hash value of a list of files
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
+
+
+def exif_size(img):
+ # Returns exif-corrected PIL size
+ s = img.size # (width, height)
+ try:
+ rotation = dict(img._getexif().items())[orientation]
+ if rotation == 6: # rotation 270
+ s = (s[1], s[0])
+ elif rotation == 8: # rotation 90
+ s = (s[1], s[0])
+ except:
+ pass
+
+ return s
+
+
+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
+ with torch_distributed_zero_first(rank):
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+ augment=augment, # augment images
+ hyp=hyp, # augmentation hyperparameters
+ rect=rect, # rectangular training
+ cache_images=cache,
+ single_cls=opt.single_cls,
+ stride=int(stride),
+ pad=pad,
+ image_weights=image_weights,
+ prefix=prefix)
+
+ batch_size = min(batch_size, len(dataset))
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
+ # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
+ dataloader = loader(dataset,
+ batch_size=batch_size,
+ num_workers=nw,
+ sampler=sampler,
+ pin_memory=True,
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
+ return dataloader, dataset
+
+
+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
+ """ Dataloader that reuses workers
+
+ Uses same syntax as vanilla DataLoader
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+ self.iterator = super().__iter__()
+
+ def __len__(self):
+ return len(self.batch_sampler.sampler)
+
+ def __iter__(self):
+ for i in range(len(self)):
+ yield next(self.iterator)
+
+
+class _RepeatSampler(object):
+ """ Sampler that repeats forever
+
+ Args:
+ sampler (Sampler)
+ """
+
+ def __init__(self, sampler):
+ self.sampler = sampler
+
+ def __iter__(self):
+ while True:
+ yield from iter(self.sampler)
+
+
+class LoadImages: # for inference
+ def __init__(self, path, img_size=640, stride=32):
+ p = str(Path(path).absolute()) # os-agnostic absolute path
+ if '*' in p:
+ files = sorted(glob.glob(p, recursive=True)) # glob
+ elif os.path.isdir(p):
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
+ elif os.path.isfile(p):
+ files = [p] # files
+ else:
+ raise Exception(f'ERROR: {p} does not exist')
+
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
+ ni, nv = len(images), len(videos)
+
+ self.img_size = img_size
+ self.stride = stride
+ self.files = images + videos
+ self.nf = ni + nv # number of files
+ self.video_flag = [False] * ni + [True] * nv
+ self.mode = 'image'
+ if any(videos):
+ self.new_video(videos[0]) # new video
+ else:
+ self.cap = None
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
+ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
+
+ def __iter__(self):
+ self.count = 0
+ return self
+
+ def __next__(self):
+ if self.count == self.nf:
+ raise StopIteration
+ path = self.files[self.count]
+
+ if self.video_flag[self.count]:
+ # Read video
+ self.mode = 'video'
+ ret_val, img0 = self.cap.read()
+ if not ret_val:
+ self.count += 1
+ self.cap.release()
+ if self.count == self.nf: # last video
+ raise StopIteration
+ else:
+ path = self.files[self.count]
+ self.new_video(path)
+ ret_val, img0 = self.cap.read()
+
+ self.frame += 1
+ print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
+
+ else:
+ # Read image
+ self.count += 1
+ img0 = cv2.imread(path) # BGR
+ assert img0 is not None, 'Image Not Found ' + path
+ print(f'image {self.count}/{self.nf} {path}: ', end='')
+
+ # Padded resize
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return path, img, img0, self.cap
+
+ def new_video(self, path):
+ self.frame = 0
+ self.cap = cv2.VideoCapture(path)
+ self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+ def __len__(self):
+ return self.nf # number of files
+
+
+class LoadWebcam: # for inference
+ def __init__(self, pipe='0', img_size=640, stride=32):
+ self.img_size = img_size
+ self.stride = stride
+
+ if pipe.isnumeric():
+ pipe = eval(pipe) # local camera
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
+ # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
+
+ self.pipe = pipe
+ self.cap = cv2.VideoCapture(pipe) # video capture object
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ if cv2.waitKey(1) == ord('q'): # q to quit
+ self.cap.release()
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Read frame
+ if self.pipe == 0: # local camera
+ ret_val, img0 = self.cap.read()
+ img0 = cv2.flip(img0, 1) # flip left-right
+ else: # IP camera
+ n = 0
+ while True:
+ n += 1
+ self.cap.grab()
+ if n % 30 == 0: # skip frames
+ ret_val, img0 = self.cap.retrieve()
+ if ret_val:
+ break
+
+ # Print
+ assert ret_val, f'Camera Error {self.pipe}'
+ img_path = 'webcam.jpg'
+ print(f'webcam {self.count}: ', end='')
+
+ # Padded resize
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return img_path, img, img0, None
+
+ def __len__(self):
+ return 0
+
+
+class LoadStreams: # multiple IP or RTSP cameras
+ def __init__(self, sources='streams.txt', img_size=640, stride=32):
+ self.mode = 'stream'
+ self.img_size = img_size
+ self.stride = stride
+
+ if os.path.isfile(sources):
+ with open(sources, 'r') as f:
+ sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
+ else:
+ sources = [sources]
+
+ n = len(sources)
+ self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+ self.sources = [clean_str(x) for x in sources] # clean source names for later
+ for i, s in enumerate(sources): # index, source
+ # Start thread to read frames from video stream
+ print(f'{i + 1}/{n}: {s}... ', end='')
+ if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video
+ check_requirements(('pafy', 'youtube_dl'))
+ import pafy
+ s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
+ s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
+ cap = cv2.VideoCapture(s)
+ assert cap.isOpened(), f'Failed to open {s}'
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+ self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0 # 30 FPS fallback
+ self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
+
+ _, self.imgs[i] = cap.read() # guarantee first frame
+ self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
+ print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
+ self.threads[i].start()
+ print('') # newline
+
+ # check for common shapes
+ s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
+ if not self.rect:
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
+
+ def update(self, i, cap):
+ # Read stream `i` frames in daemon thread
+ n, f = 0, self.frames[i]
+ while cap.isOpened() and n < f:
+ n += 1
+ # _, self.imgs[index] = cap.read()
+ cap.grab()
+ if n % 4: # read every 4th frame
+ success, im = cap.retrieve()
+ self.imgs[i] = im if success else self.imgs[i] * 0
+ time.sleep(1 / self.fps[i]) # wait time
+
+ def __iter__(self):
+ self.count = -1
+ return self
+
+ def __next__(self):
+ self.count += 1
+ if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
+ cv2.destroyAllWindows()
+ raise StopIteration
+
+ # Letterbox
+ img0 = self.imgs.copy()
+ img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
+
+ # Stack
+ img = np.stack(img, 0)
+
+ # Convert
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
+ img = np.ascontiguousarray(img)
+
+ return self.sources, img, img0, None
+
+ def __len__(self):
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+ # Define label paths as a function of image paths
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
+ return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset): # for training/testing
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+ cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
+ self.img_size = img_size
+ self.augment = augment
+ self.hyp = hyp
+ self.image_weights = image_weights
+ self.rect = False if image_weights else rect
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
+ self.stride = stride
+ self.path = path
+
+ try:
+ f = [] # image files
+ for p in path if isinstance(path, list) else [path]:
+ p = Path(p) # os-agnostic
+ if p.is_dir(): # dir
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+ # f = list(p.rglob('**/*.*')) # pathlib
+ elif p.is_file(): # file
+ with open(p, 'r') as t:
+ t = t.read().strip().splitlines()
+ parent = str(p.parent) + os.sep
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
+ # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
+ else:
+ raise Exception(f'{prefix}{p} does not exist')
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
+ # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
+ assert self.img_files, f'{prefix}No images found'
+ except Exception as e:
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
+
+ # Check cache
+ self.label_files = img2label_paths(self.img_files) # labels
+ cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
+ if cache_path.is_file():
+ cache, exists = torch.load(cache_path), True # load
+ if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
+ cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
+ else:
+ cache, exists = self.cache_labels(cache_path, prefix), False # cache
+
+ # Display cache
+ nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
+ if exists:
+ d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+ tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
+ assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
+
+ # Read cache
+ cache.pop('hash') # remove hash
+ cache.pop('version') # remove version
+ labels, shapes, self.segments = zip(*cache.values())
+ self.labels = list(labels)
+ self.shapes = np.array(shapes, dtype=np.float64)
+ self.img_files = list(cache.keys()) # update
+ self.label_files = img2label_paths(cache.keys()) # update
+ if single_cls:
+ for x in self.labels:
+ x[:, 0] = 0
+
+ n = len(shapes) # number of images
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
+ nb = bi[-1] + 1 # number of batches
+ self.batch = bi # batch index of image
+ self.n = n
+ self.indices = range(n)
+
+ # Rectangular Training
+ if self.rect:
+ # Sort by aspect ratio
+ s = self.shapes # wh
+ ar = s[:, 1] / s[:, 0] # aspect ratio
+ irect = ar.argsort()
+ self.img_files = [self.img_files[i] for i in irect]
+ self.label_files = [self.label_files[i] for i in irect]
+ self.labels = [self.labels[i] for i in irect]
+ self.shapes = s[irect] # wh
+ ar = ar[irect]
+
+ # Set training image shapes
+ shapes = [[1, 1]] * nb
+ for i in range(nb):
+ ari = ar[bi == i]
+ mini, maxi = ari.min(), ari.max()
+ if maxi < 1:
+ shapes[i] = [maxi, 1]
+ elif mini > 1:
+ shapes[i] = [1, 1 / mini]
+
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
+ self.imgs = [None] * n
+ if cache_images:
+ gb = 0 # Gigabytes of cached images
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
+ pbar = tqdm(enumerate(results), total=n)
+ for i, x in pbar:
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
+ gb += self.imgs[i].nbytes
+ pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
+ pbar.close()
+
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+ # Cache dataset labels, check images and read shapes
+ x = {} # dict
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
+ for i, (im_file, lb_file) in enumerate(pbar):
+ try:
+ # verify images
+ im = Image.open(im_file)
+ im.verify() # PIL verify
+ shape = exif_size(im) # image size
+ segments = [] # instance segments
+ assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+ assert im.format.lower() in img_formats, f'invalid image format {im.format}'
+
+ # verify labels
+ if os.path.isfile(lb_file):
+ nf += 1 # label found
+ with open(lb_file, 'r') as f:
+ l = [x.split() for x in f.read().strip().splitlines()]
+ if any([len(x) > 8 for x in l]): # is segment
+ classes = np.array([x[0] for x in l], dtype=np.float32)
+ segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
+ l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
+ l = np.array(l, dtype=np.float32)
+ if len(l):
+ assert l.shape[1] == 5, 'labels require 5 columns each'
+ assert (l >= 0).all(), 'negative labels'
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
+ else:
+ ne += 1 # label empty
+ l = np.zeros((0, 5), dtype=np.float32)
+ else:
+ nm += 1 # label missing
+ l = np.zeros((0, 5), dtype=np.float32)
+ x[im_file] = [l, shape, segments]
+ except Exception as e:
+ nc += 1
+ logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
+
+ pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
+ pbar.close()
+
+ if nf == 0:
+ logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
+
+ x['hash'] = get_hash(self.label_files + self.img_files)
+ x['results'] = nf, nm, ne, nc, i + 1
+ x['version'] = 0.1 # cache version
+ try:
+ torch.save(x, path) # save for next time
+ logging.info(f'{prefix}New cache created: {path}')
+ except Exception as e:
+ logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # path not writeable
+ return x
+
+ def __len__(self):
+ return len(self.img_files)
+
+ # def __iter__(self):
+ # self.count = -1
+ # print('ran dataset iter')
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+ # return self
+
+ def __getitem__(self, index):
+ index = self.indices[index] # linear, shuffled, or image_weights
+
+ hyp = self.hyp
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
+ if mosaic:
+ # Load mosaic
+ img, labels = load_mosaic(self, index)
+ shapes = None
+
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
+ if random.random() < hyp['mixup']:
+ img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
+ labels = np.concatenate((labels, labels2), 0)
+
+ else:
+ # Load image
+ img, (h0, w0), (h, w) = load_image(self, index)
+
+ # Letterbox
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
+
+ labels = self.labels[index].copy()
+ if labels.size: # normalized xywh to pixel xyxy format
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+ if self.augment:
+ # Augment imagespace
+ if not mosaic:
+ img, labels = random_perspective(img, labels,
+ degrees=hyp['degrees'],
+ translate=hyp['translate'],
+ scale=hyp['scale'],
+ shear=hyp['shear'],
+ perspective=hyp['perspective'])
+
+ # Augment colorspace
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+ # Apply cutouts
+ # if random.random() < 0.9:
+ # labels = cutout(img, labels)
+
+ nL = len(labels) # number of labels
+ if nL:
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
+
+ if self.augment:
+ # flip up-down
+ if random.random() < hyp['flipud']:
+ img = np.flipud(img)
+ if nL:
+ labels[:, 2] = 1 - labels[:, 2]
+
+ # flip left-right
+ if random.random() < hyp['fliplr']:
+ img = np.fliplr(img)
+ if nL:
+ labels[:, 1] = 1 - labels[:, 1]
+
+ labels_out = torch.zeros((nL, 6))
+ if nL:
+ labels_out[:, 1:] = torch.from_numpy(labels)
+
+ # Convert
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ img = np.ascontiguousarray(img)
+
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+ @staticmethod
+ def collate_fn(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ for i, l in enumerate(label):
+ l[:, 0] = i # add target image index for build_targets()
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+ @staticmethod
+ def collate_fn4(batch):
+ img, label, path, shapes = zip(*batch) # transposed
+ n = len(shapes) // 4
+ img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+ ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
+ wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
+ s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
+ for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
+ i *= 4
+ if random.random() < 0.5:
+ im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
+ 0].type(img[i].type())
+ l = label[i]
+ else:
+ im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
+ l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+ img4.append(im)
+ label4.append(l)
+
+ for i, l in enumerate(label4):
+ l[:, 0] = i # add target image index for build_targets()
+
+ return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def load_image(self, index):
+ # loads 1 image from dataset, returns img, original hw, resized hw
+ img = self.imgs[index]
+ if img is None: # not cached
+ path = self.img_files[index]
+ img = cv2.imread(path) # BGR
+ assert img is not None, 'Image Not Found ' + path
+ h0, w0 = img.shape[:2] # orig hw
+ r = self.img_size / max(h0, w0) # ratio
+ if r != 1: # if sizes are not equal
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
+ interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
+ else:
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
+
+
+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
+ dtype = img.dtype # uint8
+
+ x = np.arange(0, 256, dtype=np.int16)
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
+
+
+def hist_equalize(img, clahe=True, bgr=False):
+ # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
+ yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+ if clahe:
+ c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+ yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+ else:
+ yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
+ return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
+
+
+def load_mosaic(self, index):
+ # loads images in a 4-mosaic
+
+ labels4, segments4 = [], []
+ s = self.img_size
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img4
+ if i == 0: # top left
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
+ elif i == 1: # top right
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+ elif i == 2: # bottom left
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+ elif i == 3: # bottom right
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ padw = x1a - x1b
+ padh = y1a - y1b
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+ labels4.append(labels)
+ segments4.extend(segments)
+
+ # Concat/clip labels
+ labels4 = np.concatenate(labels4, 0)
+ for x in (labels4[:, 1:], *segments4):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img4, labels4 = replicate(img4, labels4) # replicate
+
+ # Augment
+ img4, labels4 = random_perspective(img4, labels4, segments4,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img4, labels4
+
+
+def load_mosaic9(self, index):
+ # loads images in a 9-mosaic
+
+ labels9, segments9 = [], []
+ s = self.img_size
+ indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
+ for i, index in enumerate(indices):
+ # Load image
+ img, _, (h, w) = load_image(self, index)
+
+ # place img in img9
+ if i == 0: # center
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
+ h0, w0 = h, w
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
+ elif i == 1: # top
+ c = s, s - h, s + w, s
+ elif i == 2: # top right
+ c = s + wp, s - h, s + wp + w, s
+ elif i == 3: # right
+ c = s + w0, s, s + w0 + w, s + h
+ elif i == 4: # bottom right
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
+ elif i == 5: # bottom
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
+ elif i == 6: # bottom left
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+ elif i == 7: # left
+ c = s - w, s + h0 - h, s, s + h0
+ elif i == 8: # top left
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+ padx, pady = c[:2]
+ x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
+
+ # Labels
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
+ if labels.size:
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
+ segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+ labels9.append(labels)
+ segments9.extend(segments)
+
+ # Image
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
+ hp, wp = h, w # height, width previous
+
+ # Offset
+ yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+ # Concat/clip labels
+ labels9 = np.concatenate(labels9, 0)
+ labels9[:, [1, 3]] -= xc
+ labels9[:, [2, 4]] -= yc
+ c = np.array([xc, yc]) # centers
+ segments9 = [x - c for x in segments9]
+
+ for x in (labels9[:, 1:], *segments9):
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
+ # img9, labels9 = replicate(img9, labels9) # replicate
+
+ # Augment
+ img9, labels9 = random_perspective(img9, labels9, segments9,
+ degrees=self.hyp['degrees'],
+ translate=self.hyp['translate'],
+ scale=self.hyp['scale'],
+ shear=self.hyp['shear'],
+ perspective=self.hyp['perspective'],
+ border=self.mosaic_border) # border to remove
+
+ return img9, labels9
+
+
+def replicate(img, labels):
+ # Replicate labels
+ h, w = img.shape[:2]
+ boxes = labels[:, 1:].astype(int)
+ x1, y1, x2, y2 = boxes.T
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
+ x1b, y1b, x2b, y2b = boxes[i]
+ bh, bw = y2b - y1b, x2b - x1b
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+ return img, labels
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+ # Resize and pad image while meeting stride-multiple constraints
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
+ elif scaleFill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)
+
+
+def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
+ border=(0, 0)):
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
+ # targets = [cls, xyxy]
+
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
+ width = img.shape[1] + border[1] * 2
+
+ # Center
+ C = np.eye(3)
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
+
+ # Perspective
+ P = np.eye(3)
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
+
+ # Rotation and Scale
+ R = np.eye(3)
+ a = random.uniform(-degrees, degrees)
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
+ s = random.uniform(1 - scale, 1 + scale)
+ # s = 2 ** random.uniform(-scale, scale)
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+ # Shear
+ S = np.eye(3)
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
+
+ # Translation
+ T = np.eye(3)
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
+
+ # Combined rotation matrix
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
+ if perspective:
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
+ else: # affine
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+ # Visualize
+ # import matplotlib.pyplot as plt
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+ # ax[0].imshow(img[:, :, ::-1]) # base
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
+
+ # Transform label coordinates
+ n = len(targets)
+ if n:
+ use_segments = any(x.any() for x in segments)
+ new = np.zeros((n, 4))
+ if use_segments: # warp segments
+ segments = resample_segments(segments) # upsample
+ for i, segment in enumerate(segments):
+ xy = np.ones((len(segment), 3))
+ xy[:, :2] = segment
+ xy = xy @ M.T # transform
+ xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
+
+ # clip
+ new[i] = segment2box(xy, width, height)
+
+ else: # warp boxes
+ xy = np.ones((n * 4, 3))
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
+ xy = xy @ M.T # transform
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
+
+ # create new boxes
+ x = xy[:, [0, 2, 4, 6]]
+ y = xy[:, [1, 3, 5, 7]]
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+ # clip
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+ # filter candidates
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+ targets = targets[i]
+ targets[:, 1:5] = new[i]
+
+ return img, targets
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
+
+
+def cutout(image, labels):
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+ h, w = image.shape[:2]
+
+ def bbox_ioa(box1, box2):
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
+ box2 = box2.transpose()
+
+ # Get the coordinates of bounding boxes
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+
+ # Intersection area
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+ # box2 area
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
+
+ # Intersection over box2 area
+ return inter_area / box2_area
+
+ # create random masks
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
+ for s in scales:
+ mask_h = random.randint(1, int(h * s))
+ mask_w = random.randint(1, int(w * s))
+
+ # box
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
+ xmax = min(w, xmin + mask_w)
+ ymax = min(h, ymin + mask_h)
+
+ # apply random color mask
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+ # return unobscured labels
+ if len(labels) and s > 0.03:
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
+
+ return labels
+
+
+def create_folder(path='./new'):
+ # Create folder
+ if os.path.exists(path):
+ shutil.rmtree(path) # delete output folder
+ os.makedirs(path) # make new output folder
+
+
+def flatten_recursive(path='../coco128'):
+ # Flatten a recursive directory by bringing all files to top level
+ new_path = Path(path + '_flat')
+ create_folder(new_path)
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+ shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
+ # Convert detection dataset into classification dataset, with one directory per class
+
+ path = Path(path) # images dir
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
+ files = list(path.rglob('*.*'))
+ n = len(files) # number of files
+ for im_file in tqdm(files, total=n):
+ if im_file.suffix[1:] in img_formats:
+ # image
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
+ h, w = im.shape[:2]
+
+ # labels
+ lb_file = Path(img2label_paths([str(im_file)])[0])
+ if Path(lb_file).exists():
+ with open(lb_file, 'r') as f:
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
+
+ for j, x in enumerate(lb):
+ c = int(x[0]) # class
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
+ if not f.parent.is_dir():
+ f.parent.mkdir(parents=True)
+
+ b = x[1:] * [w, h, w, h] # box
+ # b[2:] = b[2:].max() # rectangle to square
+ b[2:] = b[2:] * 1.2 + 3 # pad
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False):
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+ Usage: from utils.datasets import *; autosplit('../coco128')
+ Arguments
+ path: Path to images directory
+ weights: Train, val, test weights (list)
+ annotated_only: Only use images with an annotated txt file
+ """
+ path = Path(path) # images dir
+ files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
+ n = len(files) # number of files
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
+
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
+ [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
+
+ print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+ for i, img in tqdm(zip(indices, files), total=n):
+ if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
+ with open(path / txt[i], 'a') as f:
+ f.write(str(img) + '\n') # add image to txt file
diff --git a/src/Yolo/utils/flask_rest_api/README.md b/src/Yolo/utils/flask_rest_api/README.md
new file mode 100644
index 0000000..324c241
--- /dev/null
+++ b/src/Yolo/utils/flask_rest_api/README.md
@@ -0,0 +1,68 @@
+# Flask REST API
+[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
+
+## Requirements
+
+[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
+```shell
+$ pip install Flask
+```
+
+## Run
+
+After Flask installation run:
+
+```shell
+$ python3 restapi.py --port 5000
+```
+
+Then use [curl](https://curl.se/) to perform a request:
+
+```shell
+$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'`
+```
+
+The model inference results are returned as a JSON response:
+
+```json
+[
+ {
+ "class": 0,
+ "confidence": 0.8900438547,
+ "height": 0.9318675399,
+ "name": "person",
+ "width": 0.3264600933,
+ "xcenter": 0.7438579798,
+ "ycenter": 0.5207948685
+ },
+ {
+ "class": 0,
+ "confidence": 0.8440024257,
+ "height": 0.7155083418,
+ "name": "person",
+ "width": 0.6546785235,
+ "xcenter": 0.427829951,
+ "ycenter": 0.6334488392
+ },
+ {
+ "class": 27,
+ "confidence": 0.3771208823,
+ "height": 0.3902671337,
+ "name": "tie",
+ "width": 0.0696444362,
+ "xcenter": 0.3675483763,
+ "ycenter": 0.7991207838
+ },
+ {
+ "class": 27,
+ "confidence": 0.3527112305,
+ "height": 0.1540903747,
+ "name": "tie",
+ "width": 0.0336618312,
+ "xcenter": 0.7814827561,
+ "ycenter": 0.5065554976
+ }
+]
+```
+
+An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given in `example_request.py`
diff --git a/src/Yolo/utils/flask_rest_api/example_request.py b/src/Yolo/utils/flask_rest_api/example_request.py
new file mode 100644
index 0000000..ff21f30
--- /dev/null
+++ b/src/Yolo/utils/flask_rest_api/example_request.py
@@ -0,0 +1,13 @@
+"""Perform test request"""
+import pprint
+
+import requests
+
+DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
+TEST_IMAGE = "zidane.jpg"
+
+image_data = open(TEST_IMAGE, "rb").read()
+
+response = requests.post(DETECTION_URL, files={"image": image_data}).json()
+
+pprint.pprint(response)
diff --git a/src/Yolo/utils/flask_rest_api/restapi.py b/src/Yolo/utils/flask_rest_api/restapi.py
new file mode 100644
index 0000000..a54e230
--- /dev/null
+++ b/src/Yolo/utils/flask_rest_api/restapi.py
@@ -0,0 +1,37 @@
+"""
+Run a rest API exposing the yolov5s object detection model
+"""
+import argparse
+import io
+
+import torch
+from PIL import Image
+from flask import Flask, request
+
+app = Flask(__name__)
+
+DETECTION_URL = "/v1/object-detection/yolov5s"
+
+
+@app.route(DETECTION_URL, methods=["POST"])
+def predict():
+ if not request.method == "POST":
+ return
+
+ if request.files.get("image"):
+ image_file = request.files["image"]
+ image_bytes = image_file.read()
+
+ img = Image.open(io.BytesIO(image_bytes))
+
+ results = model(img, size=640) # reduce size=320 for faster inference
+ return results.pandas().xyxy[0].to_json(orient="records")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
+ parser.add_argument("--port", default=5000, type=int, help="port number")
+ args = parser.parse_args()
+
+ model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache
+ app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat
diff --git a/src/Yolo/utils/general.py b/src/Yolo/utils/general.py
new file mode 100644
index 0000000..9a88271
--- /dev/null
+++ b/src/Yolo/utils/general.py
@@ -0,0 +1,692 @@
+# YOLOv5 general utils
+
+import glob
+import logging
+import math
+import os
+import platform
+import random
+import re
+import subprocess
+import time
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+
+import cv2
+import numpy as np
+import pandas as pd
+import pkg_resources as pkg
+import torch
+import torchvision
+import yaml
+
+from utils.google_utils import gsutil_getsize
+from utils.metrics import fitness
+from utils.torch_utils import init_torch_seeds
+
+# Settings
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
+
+
+def set_logging(rank=-1, verbose=True):
+ logging.basicConfig(
+ format="%(message)s",
+ level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
+
+
+def init_seeds(seed=0):
+ # Initialize random number generator (RNG) seeds
+ random.seed(seed)
+ np.random.seed(seed)
+ init_torch_seeds(seed)
+
+
+def get_latest_run(search_dir='.'):
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+ return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def is_docker():
+ # Is environment a Docker container
+ return Path('/workspace').exists() # or Path('/.dockerenv').exists()
+
+
+def is_colab():
+ # Is environment a Google Colab instance
+ try:
+ import google.colab
+ return True
+ except Exception as e:
+ return False
+
+
+def emojis(str=''):
+ # Return platform-dependent emoji-safe version of string
+ return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
+
+
+def file_size(file):
+ # Return file size in MB
+ return Path(file).stat().st_size / 1e6
+
+
+def check_online():
+ # Check internet connectivity
+ import socket
+ try:
+ socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
+ return True
+ except OSError:
+ return False
+
+
+def check_git_status():
+ # Recommend 'git pull' if code is out of date
+ print(colorstr('github: '), end='')
+ try:
+ assert Path('.git').exists(), 'skipping check (not a git repository)'
+ assert not is_docker(), 'skipping check (Docker image)'
+ assert check_online(), 'skipping check (offline)'
+
+ cmd = 'git fetch && git config --get remote.origin.url'
+ url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
+ branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
+ n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
+ if n > 0:
+ s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
+ f"Use 'git pull' to update or 'git clone {url}' to download latest."
+ else:
+ s = f'up to date with {url} ✅'
+ print(emojis(s)) # emoji-safe
+ except Exception as e:
+ print(e)
+
+
+def check_python(minimum='3.7.0', required=True):
+ # Check current python version vs. required python version
+ current = platform.python_version()
+ result = pkg.parse_version(current) >= pkg.parse_version(minimum)
+ if required:
+ assert result, f'Python {minimum} required by YOLOv5, but Python {current} is currently installed'
+ return result
+
+
+def check_requirements(requirements='requirements.txt', exclude=()):
+ # Check installed dependencies meet requirements (pass *.txt file or list of packages)
+ prefix = colorstr('red', 'bold', 'requirements:')
+ check_python() # check python version
+ if isinstance(requirements, (str, Path)): # requirements.txt file
+ file = Path(requirements)
+ if not file.exists():
+ print(f"{prefix} {file.resolve()} not found, check failed.")
+ return
+ requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
+ else: # list or tuple of packages
+ requirements = [x for x in requirements if x not in exclude]
+
+ n = 0 # number of packages updates
+ for r in requirements:
+ try:
+ pkg.require(r)
+ except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
+ n += 1
+ print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...")
+ try:
+ print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
+ except Exception as e:
+ print(f'{prefix} {e}')
+
+ if n: # if packages updated
+ source = file.resolve() if 'file' in locals() else requirements
+ s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
+ f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
+ print(emojis(s)) # emoji-safe
+
+
+def check_img_size(img_size, s=32):
+ # Verify img_size is a multiple of stride s
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
+ if new_size != img_size:
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
+ return new_size
+
+
+def check_imshow():
+ # Check if environment supports image displays
+ try:
+ assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
+ assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
+ cv2.imshow('test', np.zeros((1, 1, 3)))
+ cv2.waitKey(1)
+ cv2.destroyAllWindows()
+ cv2.waitKey(1)
+ return True
+ except Exception as e:
+ print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
+ return False
+
+
+def check_file(file):
+ # Search for file if not found
+ if Path(file).is_file() or file == '':
+ return file
+ else:
+ files = glob.glob('./**/' + file, recursive=True) # find file
+ assert len(files), f'File Not Found: {file}' # assert file was found
+ assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
+ return files[0] # return file
+
+
+def check_dataset(dict):
+ # Download dataset if not found locally
+ val, s = dict.get('val'), dict.get('download')
+ if val and len(val):
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
+ if not all(x.exists() for x in val):
+ print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
+ if s and len(s): # download script
+ if s.startswith('http') and s.endswith('.zip'): # URL
+ f = Path(s).name # filename
+ print(f'Downloading {s} ...')
+ torch.hub.download_url_to_file(s, f)
+ r = os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
+ elif s.startswith('bash '): # bash script
+ print(f'Running {s} ...')
+ r = os.system(s)
+ else: # python script
+ r = exec(s) # return None
+ print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure')) # print result
+ else:
+ raise Exception('Dataset not found.')
+
+
+def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
+ # Multi-threaded file download and unzip function
+ def download_one(url, dir):
+ # Download 1 file
+ f = dir / Path(url).name # filename
+ if not f.exists():
+ print(f'Downloading {url} to {f}...')
+ if curl:
+ os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail
+ else:
+ torch.hub.download_url_to_file(url, f, progress=True) # torch download
+ if unzip and f.suffix in ('.zip', '.gz'):
+ print(f'Unzipping {f}...')
+ if f.suffix == '.zip':
+ s = f'unzip -qo {f} -d {dir} && rm {f}' # unzip -quiet -overwrite
+ elif f.suffix == '.gz':
+ s = f'tar xfz {f} --directory {f.parent}' # unzip
+ if delete: # delete zip file after unzip
+ s += f' && rm {f}'
+ os.system(s)
+
+ dir = Path(dir)
+ dir.mkdir(parents=True, exist_ok=True) # make directory
+ if threads > 1:
+ pool = ThreadPool(threads)
+ pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
+ pool.close()
+ pool.join()
+ else:
+ for u in tuple(url) if isinstance(url, str) else url:
+ download_one(u, dir)
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+ # Cleans a string by replacing special characters with underscore _
+ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+ # lambda function for sinusoidal ramp from y1 to y2
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def colorstr(*input):
+ # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
+ *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
+ colors = {'black': '\033[30m', # basic colors
+ 'red': '\033[31m',
+ 'green': '\033[32m',
+ 'yellow': '\033[33m',
+ 'blue': '\033[34m',
+ 'magenta': '\033[35m',
+ 'cyan': '\033[36m',
+ 'white': '\033[37m',
+ 'bright_black': '\033[90m', # bright colors
+ 'bright_red': '\033[91m',
+ 'bright_green': '\033[92m',
+ 'bright_yellow': '\033[93m',
+ 'bright_blue': '\033[94m',
+ 'bright_magenta': '\033[95m',
+ 'bright_cyan': '\033[96m',
+ 'bright_white': '\033[97m',
+ 'end': '\033[0m', # misc
+ 'bold': '\033[1m',
+ 'underline': '\033[4m'}
+ return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
+
+
+def labels_to_class_weights(labels, nc=80):
+ # Get class weights (inverse frequency) from training labels
+ if labels[0] is None: # no labels loaded
+ return torch.Tensor()
+
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
+
+ # Prepend gridpoint count (for uCE training)
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
+
+ weights[weights == 0] = 1 # replace empty bins with 1
+ weights = 1 / weights # number of targets per class
+ weights /= weights.sum() # normalize
+ return torch.from_numpy(weights)
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+ # Produces image weights based on class_weights and image contents
+ class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
+ return image_weights
+
+
+def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+ return x
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+ # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
+ y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
+ y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
+ y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
+ return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+ # Convert normalized segments into pixel segments, shape (n,2)
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = w * x[:, 0] + padw # top left x
+ y[:, 1] = h * x[:, 1] + padh # top left y
+ return y
+
+
+def segment2box(segment, width=640, height=640):
+ # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
+ x, y = segment.T # segment xy
+ inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+ x, y, = x[inside], y[inside]
+ return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
+
+
+def segments2boxes(segments):
+ # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
+ boxes = []
+ for s in segments:
+ x, y = s.T # segment xy
+ boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
+ return xyxy2xywh(np.array(boxes)) # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+ # Up-sample an (n,2) segment
+ for i, s in enumerate(segments):
+ x = np.linspace(0, len(s) - 1, n)
+ xp = np.arange(len(s))
+ segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
+ return segments
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, :4] /= gain
+ clip_coords(coords, img0_shape)
+ return coords
+
+
+def clip_coords(boxes, img_shape):
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
+
+
+def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
+ box2 = box2.T
+
+ # Get the coordinates of bounding boxes
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+ else: # transform from xywh to xyxy
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+
+ # Intersection area
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+ # Union Area
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+ union = w1 * h1 + w2 * h2 - inter + eps
+
+ iou = inter / union
+ if GIoU or DIoU or CIoU:
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
+ if DIoU:
+ return iou - rho2 / c2 # DIoU
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+ with torch.no_grad():
+ alpha = v / (v - iou + (1 + eps))
+ return iou - (rho2 / c2 + v * alpha) # CIoU
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
+ c_area = cw * ch + eps # convex area
+ return iou - (c_area - union) / c_area # GIoU
+ else:
+ return iou # IoU
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def wh_iou(wh1, wh2):
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+ wh1 = wh1[:, None] # [N,1,2]
+ wh2 = wh2[None] # [1,M,2]
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
+
+
+def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
+ labels=(), max_det=300):
+ """Runs Non-Maximum Suppression (NMS) on inference results
+
+ Returns:
+ list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+ """
+
+ nc = prediction.shape[2] - 5 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Checks
+ assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
+ assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
+
+ # Settings
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
+ max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
+ time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ t = time.time()
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
+ x = x[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ l = labels[xi]
+ v = torch.zeros((len(l), nc + 5), device=x.device)
+ v[:, :4] = l[:, 1:5] # box
+ v[:, 4] = 1.0 # conf
+ v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, cls)
+ if multi_label:
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 5:].max(1, keepdim=True)
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # Apply finite constraint
+ # if not torch.isfinite(x).all():
+ # x = x[torch.isfinite(x).all(1)]
+
+ # Check shape
+ n = x.shape[0] # number of boxes
+ if not n: # no boxes
+ continue
+ elif n > max_nms: # excess boxes
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
+
+ # Batched NMS
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ if i.shape[0] > max_det: # limit detections
+ i = i[:max_det]
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ if (time.time() - t) > time_limit:
+ print(f'WARNING: NMS time limit {time_limit}s exceeded')
+ break # time limit exceeded
+
+ return output
+
+
+def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
+ x = torch.load(f, map_location=torch.device('cpu'))
+ if x.get('ema'):
+ x['model'] = x['ema'] # replace model with ema
+ for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
+ x[k] = None
+ x['epoch'] = -1
+ x['model'].half() # to FP16
+ for p in x['model'].parameters():
+ p.requires_grad = False
+ torch.save(x, s or f)
+ mb = os.path.getsize(s or f) / 1E6 # filesize
+ print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
+
+ if bucket:
+ url = 'gs://%s/evolve.txt' % bucket
+ if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
+ os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
+
+ with open('evolve.txt', 'a') as f: # append result
+ f.write(c + b + '\n')
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
+ x = x[np.argsort(-fitness(x))] # sort
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
+
+ # Save yaml
+ for i, k in enumerate(hyp.keys()):
+ hyp[k] = float(x[0, i + 7])
+ with open(yaml_file, 'w') as f:
+ results = tuple(x[0, :7])
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
+ yaml.safe_dump(hyp, f, sort_keys=False)
+
+ if bucket:
+ os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
+
+
+def apply_classifier(x, model, img, im0):
+ # Apply a second stage classifier to yolo outputs
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
+ for i, d in enumerate(x): # per image
+ if d is not None and len(d):
+ d = d.clone()
+
+ # Reshape and pad cutouts
+ b = xyxy2xywh(d[:, :4]) # boxes
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
+ d[:, :4] = xywh2xyxy(b).long()
+
+ # Rescale boxes from img_size to im0 size
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
+
+ # Classes
+ pred_cls1 = d[:, 5].long()
+ ims = []
+ for j, a in enumerate(d): # per item
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+ im = cv2.resize(cutout, (224, 224)) # BGR
+ # cv2.imwrite('test%i.jpg' % j, cutout)
+
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
+ ims.append(im)
+
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
+
+ return x
+
+
+def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
+ # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
+ xyxy = torch.tensor(xyxy).view(-1, 4)
+ b = xyxy2xywh(xyxy) # boxes
+ if square:
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
+ b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
+ xyxy = xywh2xyxy(b).long()
+ clip_coords(xyxy, im.shape)
+ crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
+ if save:
+ cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
+ return crop
+
+
+def increment_path(path, exist_ok=False, sep='', mkdir=False):
+ # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
+ path = Path(path) # os-agnostic
+ if path.exists() and not exist_ok:
+ suffix = path.suffix
+ path = path.with_suffix('')
+ dirs = glob.glob(f"{path}{sep}*") # similar paths
+ matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
+ i = [int(m.groups()[0]) for m in matches if m] # indices
+ n = max(i) + 1 if i else 2 # increment number
+ path = Path(f"{path}{sep}{n}{suffix}") # update path
+ dir = path if path.suffix == '' else path.parent # directory
+ if not dir.exists() and mkdir:
+ dir.mkdir(parents=True, exist_ok=True) # make directory
+ return path
diff --git a/src/Yolo/utils/google_app_engine/Dockerfile b/src/Yolo/utils/google_app_engine/Dockerfile
new file mode 100644
index 0000000..0155618
--- /dev/null
+++ b/src/Yolo/utils/google_app_engine/Dockerfile
@@ -0,0 +1,25 @@
+FROM gcr.io/google-appengine/python
+
+# Create a virtualenv for dependencies. This isolates these packages from
+# system-level packages.
+# Use -p python3 or -p python3.7 to select python version. Default is version 2.
+RUN virtualenv /env -p python3
+
+# Setting these environment variables are the same as running
+# source /env/bin/activate.
+ENV VIRTUAL_ENV /env
+ENV PATH /env/bin:$PATH
+
+RUN apt-get update && apt-get install -y python-opencv
+
+# Copy the application's requirements.txt and run pip to install all
+# dependencies into the virtualenv.
+ADD requirements.txt /app/requirements.txt
+RUN pip install -r /app/requirements.txt
+
+# Add the application source code.
+ADD . /app
+
+# Run a WSGI server to serve the application. gunicorn must be declared as
+# a dependency in requirements.txt.
+CMD gunicorn -b :$PORT main:app
diff --git a/src/Yolo/utils/google_app_engine/additional_requirements.txt b/src/Yolo/utils/google_app_engine/additional_requirements.txt
new file mode 100644
index 0000000..5fcc305
--- /dev/null
+++ b/src/Yolo/utils/google_app_engine/additional_requirements.txt
@@ -0,0 +1,4 @@
+# add these requirements in your app on top of the existing ones
+pip==18.1
+Flask==1.0.2
+gunicorn==19.9.0
diff --git a/src/Yolo/utils/google_app_engine/app.yaml b/src/Yolo/utils/google_app_engine/app.yaml
new file mode 100644
index 0000000..ac29d10
--- /dev/null
+++ b/src/Yolo/utils/google_app_engine/app.yaml
@@ -0,0 +1,14 @@
+runtime: custom
+env: flex
+
+service: yolov5app
+
+liveness_check:
+ initial_delay_sec: 600
+
+manual_scaling:
+ instances: 1
+resources:
+ cpu: 1
+ memory_gb: 4
+ disk_size_gb: 20
\ No newline at end of file
diff --git a/src/Yolo/utils/google_utils.py b/src/Yolo/utils/google_utils.py
new file mode 100644
index 0000000..63d3e5b
--- /dev/null
+++ b/src/Yolo/utils/google_utils.py
@@ -0,0 +1,127 @@
+# Google utils: https://cloud.google.com/storage/docs/reference/libraries
+
+import os
+import platform
+import subprocess
+import time
+from pathlib import Path
+
+import requests
+import torch
+
+
+def gsutil_getsize(url=''):
+ # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+ s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
+ return eval(s.split(' ')[0]) if len(s) else 0 # bytes
+
+
+def attempt_download(file, repo='ultralytics/yolov5'):
+ # Attempt file download if does not exist
+ file = Path(str(file).strip().replace("'", ''))
+
+ if not file.exists():
+ file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
+ try:
+ response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
+ assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
+ tag = response['tag_name'] # i.e. 'v1.0'
+ except: # fallback plan
+ assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
+ 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
+ try:
+ tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
+ except:
+ tag = 'v5.0' # current release
+
+ name = file.name
+ if name in assets:
+ msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
+ redundant = False # second download option
+ try: # GitHub
+ url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
+ print(f'Downloading {url} to {file}...')
+ torch.hub.download_url_to_file(url, file)
+ assert file.exists() and file.stat().st_size > 1E6 # check
+ except Exception as e: # GCP
+ print(f'Download error: {e}')
+ assert redundant, 'No secondary mirror'
+ url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
+ print(f'Downloading {url} to {file}...')
+ os.system(f"curl -L '{url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
+ finally:
+ if not file.exists() or file.stat().st_size < 1E6: # check
+ file.unlink(missing_ok=True) # remove partial downloads
+ print(f'ERROR: Download failure: {msg}')
+ print('')
+ return
+
+
+def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
+ # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
+ t = time.time()
+ file = Path(file)
+ cookie = Path('cookie') # gdrive cookie
+ print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
+ file.unlink(missing_ok=True) # remove existing file
+ cookie.unlink(missing_ok=True) # remove existing cookie
+
+ # Attempt file download
+ out = "NUL" if platform.system() == "Windows" else "/dev/null"
+ os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
+ if os.path.exists('cookie'): # large file
+ s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
+ else: # small file
+ s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
+ r = os.system(s) # execute, capture return
+ cookie.unlink(missing_ok=True) # remove existing cookie
+
+ # Error check
+ if r != 0:
+ file.unlink(missing_ok=True) # remove partial
+ print('Download error ') # raise Exception('Download error')
+ return r
+
+ # Unzip if archive
+ if file.suffix == '.zip':
+ print('unzipping... ', end='')
+ os.system(f'unzip -q {file}') # unzip
+ file.unlink() # remove zip to free space
+
+ print(f'Done ({time.time() - t:.1f}s)')
+ return r
+
+
+def get_token(cookie="./cookie"):
+ with open(cookie) as f:
+ for line in f:
+ if "download" in line:
+ return line.split()[-1]
+ return ""
+
+# def upload_blob(bucket_name, source_file_name, destination_blob_name):
+# # Uploads a file to a bucket
+# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
+#
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(destination_blob_name)
+#
+# blob.upload_from_filename(source_file_name)
+#
+# print('File {} uploaded to {}.'.format(
+# source_file_name,
+# destination_blob_name))
+#
+#
+# def download_blob(bucket_name, source_blob_name, destination_file_name):
+# # Uploads a blob from a bucket
+# storage_client = storage.Client()
+# bucket = storage_client.get_bucket(bucket_name)
+# blob = bucket.blob(source_blob_name)
+#
+# blob.download_to_filename(destination_file_name)
+#
+# print('Blob {} downloaded to {}.'.format(
+# source_blob_name,
+# destination_file_name))
diff --git a/src/Yolo/utils/loss.py b/src/Yolo/utils/loss.py
new file mode 100644
index 0000000..9e78df1
--- /dev/null
+++ b/src/Yolo/utils/loss.py
@@ -0,0 +1,216 @@
+# Loss functions
+
+import torch
+import torch.nn as nn
+
+from utils.general import bbox_iou
+from utils.torch_utils import is_parallel
+
+
+def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+ # return positive, negative label smoothing BCE targets
+ return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+ # BCEwithLogitLoss() with reduced missing label effects.
+ def __init__(self, alpha=0.05):
+ super(BCEBlurWithLogitsLoss, self).__init__()
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
+ self.alpha = alpha
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ pred = torch.sigmoid(pred) # prob from logits
+ dx = pred - true # reduce only missing label effects
+ # dx = (pred - true).abs() # reduce missing label and false label effects
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+ loss *= alpha_factor
+ return loss.mean()
+
+
+class FocalLoss(nn.Module):
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super(FocalLoss, self).__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+ # p_t = torch.exp(-loss)
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
+
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = (1.0 - p_t) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class QFocalLoss(nn.Module):
+ # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+ super(QFocalLoss, self).__init__()
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
+ self.gamma = gamma
+ self.alpha = alpha
+ self.reduction = loss_fcn.reduction
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
+
+ def forward(self, pred, true):
+ loss = self.loss_fcn(pred, true)
+
+ pred_prob = torch.sigmoid(pred) # prob from logits
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+ modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+ loss *= alpha_factor * modulating_factor
+
+ if self.reduction == 'mean':
+ return loss.mean()
+ elif self.reduction == 'sum':
+ return loss.sum()
+ else: # 'none'
+ return loss
+
+
+class ComputeLoss:
+ # Compute losses
+ def __init__(self, model, autobalance=False):
+ super(ComputeLoss, self).__init__()
+ device = next(model.parameters()).device # get model device
+ h = model.hyp # hyperparameters
+
+ # Define criteria
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+ self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
+
+ # Focal loss
+ g = h['fl_gamma'] # focal loss gamma
+ if g > 0:
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
+ self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
+ self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
+ self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
+ for k in 'na', 'nc', 'nl', 'anchors':
+ setattr(self, k, getattr(det, k))
+
+ def __call__(self, p, targets): # predictions, targets, model
+ device = targets.device
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+ tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
+
+ # Losses
+ for i, pi in enumerate(p): # layer index, layer predictions
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
+
+ n = b.shape[0] # number of targets
+ if n:
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
+
+ # Regression
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
+ iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
+ lbox += (1.0 - iou).mean() # iou loss
+
+ # Objectness
+ tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
+
+ # Classification
+ if self.nc > 1: # cls loss (only if multiple classes)
+ t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
+ t[range(n), tcls[i]] = self.cp
+ lcls += self.BCEcls(ps[:, 5:], t) # BCE
+
+ # Append targets to text file
+ # with open('targets.txt', 'a') as file:
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+ obji = self.BCEobj(pi[..., 4], tobj)
+ lobj += obji * self.balance[i] # obj loss
+ if self.autobalance:
+ self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+ if self.autobalance:
+ self.balance = [x / self.balance[self.ssi] for x in self.balance]
+ lbox *= self.hyp['box']
+ lobj *= self.hyp['obj']
+ lcls *= self.hyp['cls']
+ bs = tobj.shape[0] # batch size
+
+ loss = lbox + lobj + lcls
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
+
+ def build_targets(self, p, targets):
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+ na, nt = self.na, targets.shape[0] # number of anchors, targets
+ tcls, tbox, indices, anch = [], [], [], []
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
+
+ g = 0.5 # bias
+ off = torch.tensor([[0, 0],
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
+ ], device=targets.device).float() * g # offsets
+
+ for i in range(self.nl):
+ anchors = self.anchors[i]
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
+
+ # Match targets to anchors
+ t = targets * gain
+ if nt:
+ # Matches
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
+ j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+ t = t[j] # filter
+
+ # Offsets
+ gxy = t[:, 2:4] # grid xy
+ gxi = gain[[2, 3]] - gxy # inverse
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
+ t = t.repeat((5, 1, 1))[j]
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+ else:
+ t = targets[0]
+ offsets = 0
+
+ # Define
+ b, c = t[:, :2].long().T # image, class
+ gxy = t[:, 2:4] # grid xy
+ gwh = t[:, 4:6] # grid wh
+ gij = (gxy - offsets).long()
+ gi, gj = gij.T # grid xy indices
+
+ # Append
+ a = t[:, 6].long() # anchor indices
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
+ anch.append(anchors[a]) # anchors
+ tcls.append(c) # class
+
+ return tcls, tbox, indices, anch
diff --git a/src/Yolo/utils/metrics.py b/src/Yolo/utils/metrics.py
new file mode 100644
index 0000000..323c84b
--- /dev/null
+++ b/src/Yolo/utils/metrics.py
@@ -0,0 +1,223 @@
+# Model validation metrics
+
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+from . import general
+
+
+def fitness(x):
+ # Model fitness as a weighted combination of metrics
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+ return (x[:, :4] * w).sum(1)
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
+ """ Compute the average precision, given the recall and precision curves.
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+ # Arguments
+ tp: True positives (nparray, nx1 or nx10).
+ conf: Objectness value from 0-1 (nparray).
+ pred_cls: Predicted object classes (nparray).
+ target_cls: True object classes (nparray).
+ plot: Plot precision-recall curve at mAP@0.5
+ save_dir: Plot save directory
+ # Returns
+ The average precision as computed in py-faster-rcnn.
+ """
+
+ # Sort by objectness
+ i = np.argsort(-conf)
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+ # Find unique classes
+ unique_classes = np.unique(target_cls)
+ nc = unique_classes.shape[0] # number of classes, number of detections
+
+ # Create Precision-Recall curve and compute AP for each class
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
+ ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+ for ci, c in enumerate(unique_classes):
+ i = pred_cls == c
+ n_l = (target_cls == c).sum() # number of labels
+ n_p = i.sum() # number of predictions
+
+ if n_p == 0 or n_l == 0:
+ continue
+ else:
+ # Accumulate FPs and TPs
+ fpc = (1 - tp[i]).cumsum(0)
+ tpc = tp[i].cumsum(0)
+
+ # Recall
+ recall = tpc / (n_l + 1e-16) # recall curve
+ r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
+
+ # Precision
+ precision = tpc / (tpc + fpc) # precision curve
+ p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
+
+ # AP from recall-precision curve
+ for j in range(tp.shape[1]):
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+ if plot and j == 0:
+ py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
+
+ # Compute F1 (harmonic mean of precision and recall)
+ f1 = 2 * p * r / (p + r + 1e-16)
+ if plot:
+ plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
+ plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
+ plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
+ plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
+
+ i = f1.mean(0).argmax() # max F1 index
+ return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
+
+
+def compute_ap(recall, precision):
+ """ Compute the average precision, given the recall and precision curves
+ # Arguments
+ recall: The recall curve (list)
+ precision: The precision curve (list)
+ # Returns
+ Average precision, precision curve, recall curve
+ """
+
+ # Append sentinel values to beginning and end
+ mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
+ mpre = np.concatenate(([1.], precision, [0.]))
+
+ # Compute the precision envelope
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+ # Integrate area under curve
+ method = 'interp' # methods: 'continuous', 'interp'
+ if method == 'interp':
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
+ else: # 'continuous'
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
+
+ return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+ # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+ def __init__(self, nc, conf=0.25, iou_thres=0.45):
+ self.matrix = np.zeros((nc + 1, nc + 1))
+ self.nc = nc # number of classes
+ self.conf = conf
+ self.iou_thres = iou_thres
+
+ def process_batch(self, detections, labels):
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+ labels (Array[M, 5]), class, x1, y1, x2, y2
+ Returns:
+ None, updates confusion matrix accordingly
+ """
+ detections = detections[detections[:, 4] > self.conf]
+ gt_classes = labels[:, 0].int()
+ detection_classes = detections[:, 5].int()
+ iou = general.box_iou(labels[:, 1:], detections[:, :4])
+
+ x = torch.where(iou > self.iou_thres)
+ if x[0].shape[0]:
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+ if x[0].shape[0] > 1:
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+ matches = matches[matches[:, 2].argsort()[::-1]]
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+ else:
+ matches = np.zeros((0, 3))
+
+ n = matches.shape[0] > 0
+ m0, m1, _ = matches.transpose().astype(np.int16)
+ for i, gc in enumerate(gt_classes):
+ j = m0 == i
+ if n and sum(j) == 1:
+ self.matrix[detection_classes[m1[j]], gc] += 1 # correct
+ else:
+ self.matrix[self.nc, gc] += 1 # background FP
+
+ if n:
+ for i, dc in enumerate(detection_classes):
+ if not any(m1 == i):
+ self.matrix[dc, self.nc] += 1 # background FN
+
+ def matrix(self):
+ return self.matrix
+
+ def plot(self, save_dir='', names=()):
+ try:
+ import seaborn as sn
+
+ array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
+ array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
+
+ fig = plt.figure(figsize=(12, 9), tight_layout=True)
+ sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
+ labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
+ sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
+ xticklabels=names + ['background FP'] if labels else "auto",
+ yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
+ fig.axes[0].set_xlabel('True')
+ fig.axes[0].set_ylabel('Predicted')
+ fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+ except Exception as e:
+ pass
+
+ def print(self):
+ for i in range(self.nc + 1):
+ print(' '.join(map(str, self.matrix[i])))
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
+ # Precision-recall curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+ py = np.stack(py, axis=1)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py.T):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
+ else:
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
+
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+ ax.set_xlabel('Recall')
+ ax.set_ylabel('Precision')
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
+
+
+def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
+ # Metric-confidence curve
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+ if 0 < len(names) < 21: # display per-class legend if < 21 classes
+ for i, y in enumerate(py):
+ ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
+ else:
+ ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
+
+ y = py.mean(0)
+ ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+ ax.set_xlabel(xlabel)
+ ax.set_ylabel(ylabel)
+ ax.set_xlim(0, 1)
+ ax.set_ylim(0, 1)
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+ fig.savefig(Path(save_dir), dpi=250)
diff --git a/src/Yolo/utils/plots.py b/src/Yolo/utils/plots.py
new file mode 100644
index 0000000..8313ef2
--- /dev/null
+++ b/src/Yolo/utils/plots.py
@@ -0,0 +1,446 @@
+# Plotting utils
+
+import glob
+import math
+import os
+import random
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sns
+import torch
+import yaml
+from PIL import Image, ImageDraw, ImageFont
+
+from utils.general import xywh2xyxy, xyxy2xywh
+from utils.metrics import fitness
+
+# Settings
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg') # for writing to files only
+
+
+class Colors:
+ # Ultralytics color palette https://ultralytics.com/
+ def __init__(self):
+ # hex = matplotlib.colors.TABLEAU_COLORS.values()
+ hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+ '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+ self.palette = [self.hex2rgb('#' + c) for c in hex]
+ self.n = len(self.palette)
+
+ def __call__(self, i, bgr=False):
+ c = self.palette[int(i) % self.n]
+ return (c[2], c[1], c[0]) if bgr else c
+
+ @staticmethod
+ def hex2rgb(h): # rgb order (PIL)
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors() # create instance for 'from utils.plots import colors'
+
+
+def hist2d(x, y, n=100):
+ # 2d histogram used in labels.png and evolve.png
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+ return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+ from scipy.signal import butter, filtfilt
+
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+ def butter_lowpass(cutoff, fs, order):
+ nyq = 0.5 * fs
+ normal_cutoff = cutoff / nyq
+ return butter(order, normal_cutoff, btype='low', analog=False)
+
+ b, a = butter_lowpass(cutoff, fs, order=order)
+ return filtfilt(b, a, data) # forward-backward filter
+
+
+def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3):
+ # Plots one bounding box on image 'im' using OpenCV
+ assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.'
+ tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness
+ c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
+ cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
+ if label:
+ tf = max(tl - 1, 1) # font thickness
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
+ cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled
+ cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
+
+
+def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None):
+ # Plots one bounding box on image 'im' using PIL
+ im = Image.fromarray(im)
+ draw = ImageDraw.Draw(im)
+ line_thickness = line_thickness or max(int(min(im.size) / 200), 2)
+ draw.rectangle(box, width=line_thickness, outline=color) # plot
+ if label:
+ font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12))
+ txt_width, txt_height = font.getsize(label)
+ draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color)
+ draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
+ return np.asarray(im)
+
+
+def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
+ # Compares the two methods for width-height anchor multiplication
+ # https://github.com/ultralytics/yolov3/issues/168
+ x = np.arange(-4.0, 4.0, .1)
+ ya = np.exp(x)
+ yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
+
+ fig = plt.figure(figsize=(6, 3), tight_layout=True)
+ plt.plot(x, ya, '.-', label='YOLOv3')
+ plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
+ plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
+ plt.xlim(left=-4, right=4)
+ plt.ylim(bottom=0, top=6)
+ plt.xlabel('input')
+ plt.ylabel('output')
+ plt.grid()
+ plt.legend()
+ fig.savefig('comparison.png', dpi=200)
+
+
+def output_to_target(output):
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
+ targets = []
+ for i, o in enumerate(output):
+ for *box, conf, cls in o.cpu().numpy():
+ targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
+ return np.array(targets)
+
+
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
+ # Plot image grid with labels
+
+ if isinstance(images, torch.Tensor):
+ images = images.cpu().float().numpy()
+ if isinstance(targets, torch.Tensor):
+ targets = targets.cpu().numpy()
+
+ # un-normalise
+ if np.max(images[0]) <= 1:
+ images *= 255
+
+ tl = 3 # line thickness
+ tf = max(tl - 1, 1) # font thickness
+ bs, _, h, w = images.shape # batch size, _, height, width
+ bs = min(bs, max_subplots) # limit plot images
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
+
+ # Check if we should resize
+ scale_factor = max_size / max(h, w)
+ if scale_factor < 1:
+ h = math.ceil(scale_factor * h)
+ w = math.ceil(scale_factor * w)
+
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
+ for i, img in enumerate(images):
+ if i == max_subplots: # if last batch has fewer images than we expect
+ break
+
+ block_x = int(w * (i // ns))
+ block_y = int(h * (i % ns))
+
+ img = img.transpose(1, 2, 0)
+ if scale_factor < 1:
+ img = cv2.resize(img, (w, h))
+
+ mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
+ if len(targets) > 0:
+ image_targets = targets[targets[:, 0] == i]
+ boxes = xywh2xyxy(image_targets[:, 2:6]).T
+ classes = image_targets[:, 1].astype('int')
+ labels = image_targets.shape[1] == 6 # labels if no conf column
+ conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
+
+ if boxes.shape[1]:
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
+ boxes[[0, 2]] *= w # scale to pixels
+ boxes[[1, 3]] *= h
+ elif scale_factor < 1: # absolute coords need scale if image scales
+ boxes *= scale_factor
+ boxes[[0, 2]] += block_x
+ boxes[[1, 3]] += block_y
+ for j, box in enumerate(boxes.T):
+ cls = int(classes[j])
+ color = colors(cls)
+ cls = names[cls] if names else cls
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
+ label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
+ plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
+
+ # Draw image filename labels
+ if paths:
+ label = Path(paths[i]).name[:40] # trim to 40 char
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
+ cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
+ lineType=cv2.LINE_AA)
+
+ # Image border
+ cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
+
+ if fname:
+ r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
+ mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
+ # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
+ Image.fromarray(mosaic).save(fname) # PIL save
+ return mosaic
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+ # Plot LR simulating training for full epochs
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
+ y = []
+ for _ in range(epochs):
+ scheduler.step()
+ y.append(optimizer.param_groups[0]['lr'])
+ plt.plot(y, '.-', label='LR')
+ plt.xlabel('epoch')
+ plt.ylabel('LR')
+ plt.grid()
+ plt.xlim(0, epochs)
+ plt.ylim(0)
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+ plt.close()
+
+
+def plot_test_txt(): # from utils.plots import *; plot_test()
+ # Plot test.txt histograms
+ x = np.loadtxt('test.txt', dtype=np.float32)
+ box = xyxy2xywh(x[:, :4])
+ cx, cy = box[:, 0], box[:, 1]
+
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+ ax.set_aspect('equal')
+ plt.savefig('hist2d.png', dpi=300)
+
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+ ax[0].hist(cx, bins=600)
+ ax[1].hist(cy, bins=600)
+ plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
+ # Plot targets.txt histograms
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(4):
+ ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
+ ax[i].legend()
+ ax[i].set_title(s[i])
+ plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
+ # Plot study.txt generated by test.py
+ fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
+ # ax = ax.ravel()
+
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+ # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+ for f in sorted(Path(path).glob('study*.txt')):
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
+ s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
+ # for i in range(7):
+ # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+ # ax[i].set_title(s[i])
+
+ j = y[3].argmax() + 1
+ ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
+ label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+ 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
+
+ ax2.grid(alpha=0.2)
+ ax2.set_yticks(np.arange(20, 60, 5))
+ ax2.set_xlim(0, 57)
+ ax2.set_ylim(30, 55)
+ ax2.set_xlabel('GPU Speed (ms/img)')
+ ax2.set_ylabel('COCO AP val')
+ ax2.legend(loc='lower right')
+ plt.savefig(str(Path(path).name) + '.png', dpi=300)
+
+
+def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
+ # plot dataset labels
+ print('Plotting labels... ')
+ c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
+ nc = int(c.max() + 1) # number of classes
+ x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+ # seaborn correlogram
+ sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+ plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+ plt.close()
+
+ # matplotlib labels
+ matplotlib.use('svg') # faster
+ ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+ y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+ # [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195
+ ax[0].set_ylabel('instances')
+ if 0 < len(names) < 30:
+ ax[0].set_xticks(range(len(names)))
+ ax[0].set_xticklabels(names, rotation=90, fontsize=10)
+ else:
+ ax[0].set_xlabel('classes')
+ sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+ sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+ # rectangles
+ labels[:, 1:3] = 0.5 # center
+ labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+ img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+ for cls, *box in labels[:1000]:
+ ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
+ ax[1].imshow(img)
+ ax[1].axis('off')
+
+ for a in [0, 1, 2, 3]:
+ for s in ['top', 'right', 'left', 'bottom']:
+ ax[a].spines[s].set_visible(False)
+
+ plt.savefig(save_dir / 'labels.jpg', dpi=200)
+ matplotlib.use('Agg')
+ plt.close()
+
+ # loggers
+ for k, v in loggers.items() or {}:
+ if k == 'wandb' and v:
+ v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
+
+
+def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
+ # Plot hyperparameter evolution results in evolve.txt
+ with open(yaml_file) as f:
+ hyp = yaml.safe_load(f)
+ x = np.loadtxt('evolve.txt', ndmin=2)
+ f = fitness(x)
+ # weights = (f - f.min()) ** 2 # for weighted results
+ plt.figure(figsize=(10, 12), tight_layout=True)
+ matplotlib.rc('font', **{'size': 8})
+ for i, (k, v) in enumerate(hyp.items()):
+ y = x[:, i + 7]
+ # mu = (y * weights).sum() / weights.sum() # best weighted result
+ mu = y[f.argmax()] # best single result
+ plt.subplot(6, 5, i + 1)
+ plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+ plt.plot(mu, f.max(), 'k+', markersize=15)
+ plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
+ if i % 5 != 0:
+ plt.yticks([])
+ print('%15s: %.3g' % (k, mu))
+ plt.savefig('evolve.png', dpi=200)
+ print('\nPlot saved as evolve.png')
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+ # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+ ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+ s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+ files = list(Path(save_dir).glob('frames*.txt'))
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
+ n = results.shape[1] # number of rows
+ x = np.arange(start, min(stop, n) if stop else n)
+ results = results[:, x]
+ t = (results[0] - results[0].min()) # set t0=0s
+ results[0] = x
+ for i, a in enumerate(ax):
+ if i < len(results):
+ label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+ a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+ a.set_title(s[i])
+ a.set_xlabel('time (s)')
+ # if fi == len(files) - 1:
+ # a.set_ylim(bottom=0)
+ for side in ['top', 'right']:
+ a.spines[side].set_visible(False)
+ else:
+ a.remove()
+ except Exception as e:
+ print('Warning: Plotting error for %s; %s' % (f, e))
+
+ ax[1].legend()
+ plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
+ # Plot training 'results*.txt', overlaying train and val losses
+ s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
+ t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
+ for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
+ ax = ax.ravel()
+ for i in range(5):
+ for j in [i, i + 5]:
+ y = results[j, x]
+ ax[i].plot(x, y, marker='.', label=s[j])
+ # y_smooth = butter_lowpass_filtfilt(y)
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
+
+ ax[i].set_title(t[i])
+ ax[i].legend()
+ ax[i].set_ylabel(f) if i == 0 else None # add filename
+ fig.savefig(f.replace('.txt', '.png'), dpi=200)
+
+
+def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
+ # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+ ax = ax.ravel()
+ s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
+ 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
+ if bucket:
+ # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
+ files = ['results%g.txt' % x for x in id]
+ c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
+ os.system(c)
+ else:
+ files = list(Path(save_dir).glob('results*.txt'))
+ assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
+ for fi, f in enumerate(files):
+ try:
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
+ n = results.shape[1] # number of rows
+ x = range(start, min(stop, n) if stop else n)
+ for i in range(10):
+ y = results[i, x]
+ if i in [0, 1, 2, 5, 6, 7]:
+ y[y == 0] = np.nan # don't show zero loss values
+ # y /= y[0] # normalize
+ label = labels[fi] if len(labels) else f.stem
+ ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
+ ax[i].set_title(s[i])
+ # if i in [5, 6, 7]: # share train and val loss y axes
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+ except Exception as e:
+ print('Warning: Plotting error for %s; %s' % (f, e))
+
+ ax[1].legend()
+ fig.savefig(Path(save_dir) / 'results.png', dpi=200)
diff --git a/src/Yolo/utils/torch_utils.py b/src/Yolo/utils/torch_utils.py
new file mode 100644
index 0000000..5074fa9
--- /dev/null
+++ b/src/Yolo/utils/torch_utils.py
@@ -0,0 +1,304 @@
+# YOLOv5 PyTorch utils
+
+import datetime
+import logging
+import math
+import os
+import platform
+import subprocess
+import time
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.backends.cudnn as cudnn
+import torch.nn as nn
+import torch.nn.functional as F
+import torchvision
+
+try:
+ import thop # for FLOPS computation
+except ImportError:
+ thop = None
+logger = logging.getLogger(__name__)
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+ """
+ Decorator to make all processes in distributed training wait for each local_master to do something.
+ """
+ if local_rank not in [-1, 0]:
+ torch.distributed.barrier()
+ yield
+ if local_rank == 0:
+ torch.distributed.barrier()
+
+
+def init_torch_seeds(seed=0):
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
+ torch.manual_seed(seed)
+ if seed == 0: # slower, more reproducible
+ cudnn.benchmark, cudnn.deterministic = False, True
+ else: # faster, less reproducible
+ cudnn.benchmark, cudnn.deterministic = True, False
+
+
+def date_modified(path=__file__):
+ # return human-readable file modification date, i.e. '2021-3-26'
+ t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
+ return f'{t.year}-{t.month}-{t.day}'
+
+
+def git_describe(path=Path(__file__).parent): # path must be a directory
+ # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
+ s = f'git -C {path} describe --tags --long --always'
+ try:
+ return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
+ except subprocess.CalledProcessError as e:
+ return '' # not a git repository
+
+
+def select_device(device='', batch_size=None):
+ # device = 'cpu' or '0' or '0,1,2,3'
+ s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
+ cpu = device.lower() == 'cpu'
+ if cpu:
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
+ elif device: # non-cpu device requested
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
+ assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
+
+ cuda = not cpu and torch.cuda.is_available()
+ if cuda:
+ devices = device.split(',') if device else range(torch.cuda.device_count()) # i.e. 0,1,6,7
+ n = len(devices) # device count
+ if n > 1 and batch_size: # check batch_size is divisible by device_count
+ assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+ space = ' ' * len(s)
+ for i, d in enumerate(devices):
+ p = torch.cuda.get_device_properties(i)
+ s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
+ else:
+ s += 'CPU\n'
+
+ logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
+ return torch.device('cuda:0' if cuda else 'cpu')
+
+
+def time_synchronized():
+ # pytorch-accurate time
+ if torch.cuda.is_available():
+ torch.cuda.synchronize()
+ return time.time()
+
+
+def profile(x, ops, n=100, device=None):
+ # profile a pytorch module or list of modules. Example usage:
+ # x = torch.randn(16, 3, 640, 640) # input
+ # m1 = lambda x: x * torch.sigmoid(x)
+ # m2 = nn.SiLU()
+ # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
+
+ device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
+ x = x.to(device)
+ x.requires_grad = True
+ print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
+ print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
+ for m in ops if isinstance(ops, list) else [ops]:
+ m = m.to(device) if hasattr(m, 'to') else m # device
+ m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
+ dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
+ try:
+ flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
+ except:
+ flops = 0
+
+ for _ in range(n):
+ t[0] = time_synchronized()
+ y = m(x)
+ t[1] = time_synchronized()
+ try:
+ _ = y.sum().backward()
+ t[2] = time_synchronized()
+ except: # no backward method
+ t[2] = float('nan')
+ dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
+ dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
+
+ s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
+ s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
+ p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
+ print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
+
+
+def is_parallel(model):
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def intersect_dicts(da, db, exclude=()):
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
+
+
+def initialize_weights(model):
+ for m in model.modules():
+ t = type(m)
+ if t is nn.Conv2d:
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+ elif t is nn.BatchNorm2d:
+ m.eps = 1e-3
+ m.momentum = 0.03
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
+ m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+ # Finds layer indices matching module class 'mclass'
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+ # Return global model sparsity
+ a, b = 0., 0.
+ for p in model.parameters():
+ a += p.numel()
+ b += (p == 0).sum()
+ return b / a
+
+
+def prune(model, amount=0.3):
+ # Prune model to requested global sparsity
+ import torch.nn.utils.prune as prune
+ print('Pruning model... ', end='')
+ for name, m in model.named_modules():
+ if isinstance(m, nn.Conv2d):
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
+ prune.remove(m, 'weight') # make permanent
+ print(' %.3g global sparsity' % sparsity(model))
+
+
+def fuse_conv_and_bn(conv, bn):
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+ fusedconv = nn.Conv2d(conv.in_channels,
+ conv.out_channels,
+ kernel_size=conv.kernel_size,
+ stride=conv.stride,
+ padding=conv.padding,
+ groups=conv.groups,
+ bias=True).requires_grad_(False).to(conv.weight.device)
+
+ # prepare filters
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+ # prepare spatial bias
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+ return fusedconv
+
+
+def model_info(model, verbose=False, img_size=640):
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
+ if verbose:
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
+ for i, (name, p) in enumerate(model.named_parameters()):
+ name = name.replace('module_list.', '')
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+ try: # FLOPS
+ from thop import profile
+ stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
+ img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
+ flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
+ img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
+ fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
+ except (ImportError, Exception):
+ fs = ''
+
+ logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def load_classifier(name='resnet101', n=2):
+ # Loads a pretrained model reshaped to n-class output
+ model = torchvision.models.__dict__[name](pretrained=True)
+
+ # ResNet model properties
+ # input_size = [3, 224, 224]
+ # input_space = 'RGB'
+ # input_range = [0, 1]
+ # mean = [0.485, 0.456, 0.406]
+ # std = [0.229, 0.224, 0.225]
+
+ # Reshape output to n classes
+ filters = model.fc.weight.shape[1]
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
+ model.fc.out_features = n
+ return model
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
+ # scales img(bs,3,y,x) by ratio constrained to gs-multiple
+ if ratio == 1.0:
+ return img
+ else:
+ h, w = img.shape[2:]
+ s = (int(h * ratio), int(w * ratio)) # new size
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
+ if not same_shape: # pad/crop img
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
+ for k, v in b.__dict__.items():
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+ continue
+ else:
+ setattr(a, k, v)
+
+
+class ModelEMA:
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
+ This is intended to allow functionality like
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+ A smoothed version of the weights is necessary for some training schemes to perform well.
+ This class is sensitive where it is initialized in the sequence of model init,
+ GPU assignment and distributed training wrappers.
+ """
+
+ def __init__(self, model, decay=0.9999, updates=0):
+ # Create EMA
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
+ # if next(model.parameters()).device.type != 'cpu':
+ # self.ema.half() # FP16 EMA
+ self.updates = updates # number of EMA updates
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
+ for p in self.ema.parameters():
+ p.requires_grad_(False)
+
+ def update(self, model):
+ # Update EMA parameters
+ with torch.no_grad():
+ self.updates += 1
+ d = self.decay(self.updates)
+
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
+ for k, v in self.ema.state_dict().items():
+ if v.dtype.is_floating_point:
+ v *= d
+ v += (1. - d) * msd[k].detach()
+
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+ # Update EMA attributes
+ copy_attr(self.ema, model, include, exclude)
diff --git a/src/Yolo/utils/wandb_logging/__init__.py b/src/Yolo/utils/wandb_logging/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/src/Yolo/utils/wandb_logging/log_dataset.py b/src/Yolo/utils/wandb_logging/log_dataset.py
new file mode 100644
index 0000000..f45a230
--- /dev/null
+++ b/src/Yolo/utils/wandb_logging/log_dataset.py
@@ -0,0 +1,24 @@
+import argparse
+
+import yaml
+
+from wandb_utils import WandbLogger
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def create_dataset_artifact(opt):
+ with open(opt.data) as f:
+ data = yaml.safe_load(f) # data dict
+ logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+ parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
+ opt = parser.parse_args()
+ opt.resume = False # Explicitly disallow resume check for dataset upload job
+
+ create_dataset_artifact(opt)
diff --git a/src/Yolo/utils/wandb_logging/wandb_utils.py b/src/Yolo/utils/wandb_logging/wandb_utils.py
new file mode 100644
index 0000000..57ce903
--- /dev/null
+++ b/src/Yolo/utils/wandb_logging/wandb_utils.py
@@ -0,0 +1,318 @@
+"""Utilities and tools for tracking runs with Weights & Biases."""
+import json
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+from tqdm import tqdm
+
+sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
+from utils.datasets import LoadImagesAndLabels
+from utils.datasets import img2label_paths
+from utils.general import colorstr, xywh2xyxy, check_dataset, check_file
+
+try:
+ import wandb
+ from wandb import init, finish
+except ImportError:
+ wandb = None
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
+ return from_string[len(prefix):]
+
+
+def check_wandb_config_file(data_config_file):
+ wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
+ if Path(wandb_config).is_file():
+ return wandb_config
+ return data_config_file
+
+
+def get_run_info(run_path):
+ run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
+ run_id = run_path.stem
+ project = run_path.parent.stem
+ entity = run_path.parent.parent.stem
+ model_artifact_name = 'run_' + run_id + '_model'
+ return entity, project, run_id, model_artifact_name
+
+
+def check_wandb_resume(opt):
+ process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
+ if isinstance(opt.resume, str):
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ if opt.global_rank not in [-1, 0]: # For resuming DDP runs
+ entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+ api = wandb.Api()
+ artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
+ modeldir = artifact.download()
+ opt.weights = str(Path(modeldir) / "last.pt")
+ return True
+ return None
+
+
+def process_wandb_config_ddp_mode(opt):
+ with open(check_file(opt.data)) as f:
+ data_dict = yaml.safe_load(f) # data dict
+ train_dir, val_dir = None, None
+ if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
+ train_dir = train_artifact.download()
+ train_path = Path(train_dir) / 'data/images/'
+ data_dict['train'] = str(train_path)
+
+ if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
+ api = wandb.Api()
+ val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
+ val_dir = val_artifact.download()
+ val_path = Path(val_dir) / 'data/images/'
+ data_dict['val'] = str(val_path)
+ if train_dir or val_dir:
+ ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
+ with open(ddp_data_path, 'w') as f:
+ yaml.safe_dump(data_dict, f)
+ opt.data = ddp_data_path
+
+
+class WandbLogger():
+ """Log training runs, datasets, models, and predictions to Weights & Biases.
+
+ This logger sends information to W&B at wandb.ai. By default, this information
+ includes hyperparameters, system configuration and metrics, model metrics,
+ and basic data metrics and analyses.
+
+ By providing additional command line arguments to train.py, datasets,
+ models and predictions can also be logged.
+
+ For more on how this logger is used, see the Weights & Biases documentation:
+ https://docs.wandb.com/guides/integrations/yolov5
+ """
+ def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
+ # Pre-training routine --
+ self.job_type = job_type
+ self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
+ # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
+ if isinstance(opt.resume, str): # checks resume from artifact
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+ model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
+ assert wandb, 'install wandb to resume wandb runs'
+ # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
+ self.wandb_run = wandb.init(id=run_id, project=project, entity=entity, resume='allow')
+ opt.resume = model_artifact_name
+ elif self.wandb:
+ self.wandb_run = wandb.init(config=opt,
+ resume="allow",
+ project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
+ entity=opt.entity,
+ name=name,
+ job_type=job_type,
+ id=run_id) if not wandb.run else wandb.run
+ if self.wandb_run:
+ if self.job_type == 'Training':
+ if not opt.resume:
+ wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
+ # Info useful for resuming from artifacts
+ self.wandb_run.config.opt = vars(opt)
+ self.wandb_run.config.data_dict = wandb_data_dict
+ self.data_dict = self.setup_training(opt, data_dict)
+ if self.job_type == 'Dataset Creation':
+ self.data_dict = self.check_and_upload_dataset(opt)
+ else:
+ prefix = colorstr('wandb: ')
+ print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
+
+ def check_and_upload_dataset(self, opt):
+ assert wandb, 'Install wandb to upload dataset'
+ check_dataset(self.data_dict)
+ config_path = self.log_dataset_artifact(check_file(opt.data),
+ opt.single_cls,
+ 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
+ print("Created dataset config file ", config_path)
+ with open(config_path) as f:
+ wandb_data_dict = yaml.safe_load(f)
+ return wandb_data_dict
+
+ def setup_training(self, opt, data_dict):
+ self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
+ self.bbox_interval = opt.bbox_interval
+ if isinstance(opt.resume, str):
+ modeldir, _ = self.download_model_artifact(opt)
+ if modeldir:
+ self.weights = Path(modeldir) / "last.pt"
+ config = self.wandb_run.config
+ opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
+ self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
+ config.opt['hyp']
+ data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
+ if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
+ self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
+ opt.artifact_alias)
+ self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
+ opt.artifact_alias)
+ self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
+ if self.train_artifact_path is not None:
+ train_path = Path(self.train_artifact_path) / 'data/images/'
+ data_dict['train'] = str(train_path)
+ if self.val_artifact_path is not None:
+ val_path = Path(self.val_artifact_path) / 'data/images/'
+ data_dict['val'] = str(val_path)
+ self.val_table = self.val_artifact.get("val")
+ self.map_val_table_path()
+ if self.val_artifact is not None:
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
+ if opt.bbox_interval == -1:
+ self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+ return data_dict
+
+ def download_dataset_artifact(self, path, alias):
+ if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
+ artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
+ dataset_artifact = wandb.use_artifact(artifact_path.as_posix())
+ assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
+ datadir = dataset_artifact.download()
+ return datadir, dataset_artifact
+ return None, None
+
+ def download_model_artifact(self, opt):
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+ model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
+ assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
+ modeldir = model_artifact.download()
+ epochs_trained = model_artifact.metadata.get('epochs_trained')
+ total_epochs = model_artifact.metadata.get('total_epochs')
+ is_finished = total_epochs is None
+ assert not is_finished, 'training is finished, can only resume incomplete runs.'
+ return modeldir, model_artifact
+ return None, None
+
+ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
+ 'original_url': str(path),
+ 'epochs_trained': epoch + 1,
+ 'save period': opt.save_period,
+ 'project': opt.project,
+ 'total_epochs': opt.epochs,
+ 'fitness_score': fitness_score
+ })
+ model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
+ wandb.log_artifact(model_artifact,
+ aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
+ print("Saving model artifact on epoch ", epoch + 1)
+
+ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
+ with open(data_file) as f:
+ data = yaml.safe_load(f) # data dict
+ nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
+ names = {k: v for k, v in enumerate(names)} # to index dictionary
+ self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
+ data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
+ self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
+ data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
+ if data.get('train'):
+ data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
+ if data.get('val'):
+ data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
+ path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
+ data.pop('download', None)
+ with open(path, 'w') as f:
+ yaml.safe_dump(data, f)
+
+ if self.job_type == 'Training': # builds correct artifact pipeline graph
+ self.wandb_run.use_artifact(self.val_artifact)
+ self.wandb_run.use_artifact(self.train_artifact)
+ self.val_artifact.wait()
+ self.val_table = self.val_artifact.get('val')
+ self.map_val_table_path()
+ else:
+ self.wandb_run.log_artifact(self.train_artifact)
+ self.wandb_run.log_artifact(self.val_artifact)
+ return path
+
+ def map_val_table_path(self):
+ self.val_table_map = {}
+ print("Mapping dataset")
+ for i, data in enumerate(tqdm(self.val_table.data)):
+ self.val_table_map[data[3]] = data[0]
+
+ def create_dataset_table(self, dataset, class_to_id, name='dataset'):
+ # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
+ artifact = wandb.Artifact(name=name, type="dataset")
+ img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
+ img_files = tqdm(dataset.img_files) if not img_files else img_files
+ for img_file in img_files:
+ if Path(img_file).is_dir():
+ artifact.add_dir(img_file, name='data/images')
+ labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
+ artifact.add_dir(labels_path, name='data/labels')
+ else:
+ artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
+ label_file = Path(img2label_paths([img_file])[0])
+ artifact.add_file(str(label_file),
+ name='data/labels/' + label_file.name) if label_file.exists() else None
+ table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
+ for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
+ box_data, img_classes = [], {}
+ for cls, *xywh in labels[:, 1:].tolist():
+ cls = int(cls)
+ box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
+ "class_id": cls,
+ "box_caption": "%s" % (class_to_id[cls])})
+ img_classes[cls] = class_to_id[cls]
+ boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
+ table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
+ Path(paths).name)
+ artifact.add(table, name)
+ return artifact
+
+ def log_training_progress(self, predn, path, names):
+ if self.val_table and self.result_table:
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
+ box_data = []
+ total_conf = 0
+ for *xyxy, conf, cls in predn.tolist():
+ if conf >= 0.25:
+ box_data.append(
+ {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+ "class_id": int(cls),
+ "box_caption": "%s %.3f" % (names[cls], conf),
+ "scores": {"class_score": conf},
+ "domain": "pixel"})
+ total_conf = total_conf + conf
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
+ id = self.val_table_map[Path(path).name]
+ self.result_table.add_data(self.current_epoch,
+ id,
+ wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
+ total_conf / max(1, len(box_data))
+ )
+
+ def log(self, log_dict):
+ if self.wandb_run:
+ for key, value in log_dict.items():
+ self.log_dict[key] = value
+
+ def end_epoch(self, best_result=False):
+ if self.wandb_run:
+ wandb.log(self.log_dict)
+ self.log_dict = {}
+ if self.result_artifact:
+ train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
+ self.result_artifact.add(train_results, 'result')
+ wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
+ ('best' if best_result else '')])
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+
+ def finish_run(self):
+ if self.wandb_run:
+ if self.log_dict:
+ wandb.log(self.log_dict)
+ wandb.run.finish()
diff --git a/src/Yolo/weights/yolov5s.pt b/src/Yolo/weights/yolov5s.pt
new file mode 100644
index 0000000..3804187
Binary files /dev/null and b/src/Yolo/weights/yolov5s.pt differ