You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
multiObjTracking/multi_object_tracking_slow.py

176 lines
5.6 KiB

import tkinter.filedialog as tkinter
import numpy as np
import argparse
import cv2
from utils import FPS
# 图像增强
def enhance_image(frame):
# 直方图均衡化
frame_yuv = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)
frame_yuv[:, :, 0] = cv2.equalizeHist(frame_yuv[:, :, 0])
frame = cv2.cvtColor(frame_yuv, cv2.COLOR_YUV2BGR)
# 锐化
sharpen_kernel = np.array([[-1, -1, -1],
[-1, 9, -1],
[-1, -1, -1]])
sharpened_frame = cv2.filter2D(frame, -1, sharpen_kernel)
# 对比度增强
alpha = 1.5 # 控制对比度1.0表示不变)
enhanced_frame = cv2.convertScaleAbs(sharpened_frame, alpha=alpha, beta=0)
# 亮度调整
beta = 30 # 控制亮度调整量
enhanced_frame = cv2.convertScaleAbs(enhanced_frame, alpha=1.0, beta=beta)
return enhanced_frame
# 参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", default="mobilenet_ssd/MobileNetSSD_deploy.prototxt",
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", default="mobilenet_ssd/MobileNetSSD_deploy.caffemodel",
help="path to Caffe pre-trained model")
ap.add_argument("-v", "--video", default=None,
help="path to input video file")
ap.add_argument("-o", "--output", type=str,
help="path to optional output video file")
ap.add_argument("-c", "--confidence", type=float, default=0.3,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# SSD标签
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# 读取网络模型
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# 初始化
if args["video"] is None:
video_path = tkinter.askopenfilename(filetypes=[("视频文件", "*.mp4")])
print("[INFO] starting video stream...")
vs = cv2.VideoCapture(video_path)
else:
print("[INFO] starting video stream...")
vs = cv2.VideoCapture(args["video"])
writer = None
# 初始化目标追踪器
trackers = []
labels = []
fps = FPS().start()
while True:
# 读取一帧
(grabbed, frame) = vs.read()
# 是否是最后了
if frame is None:
break
# 图像增强
# frame = enhance_image(frame)
# 预处理操作
(h, w) = frame.shape[:2]
width = 600
r = width / float(w)
dim = (width, int(h * r))
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 如果要将结果保存的话
if args["output"] is not None and writer is None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30, (frame.shape[1], frame.shape[0]), True)
# 先检测 再追踪
if len(trackers) == 0:
# 获取blob数据
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (w, h), 127.5)
# 得到检测结果
net.setInput(blob)
detections = net.forward()
# 遍历得到的检测结果
for i in np.arange(0, detections.shape[2]):
# 能检测到多个结果,只保留概率高的
confidence = detections[0, 0, i, 2]
# 过滤
if confidence > args["confidence"]:
# 提取类别索引
idx = int(detections[0, 0, i, 1])
label = CLASSES[idx]
# 只保留人的
if CLASSES[idx] != "person":
continue
# 得到BBOX
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# 使用CSRT目标追踪器
tracker = cv2.TrackerCSRT_create()
tracker.init(frame, (startX, startY, endX - startX, endY - startY))
# 保存结果
labels.append(label)
trackers.append(tracker)
# 绘图
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
cv2.putText(frame, label, (startX, startY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
# 如果已经有了框,就可以直接追踪了
else:
# 每一个追踪器都要进行更新
for (tracker, label) in zip(trackers, labels):
success, box = tracker.update(frame)
if success:
(startX, startY, w, h) = [int(v) for v in box]
endX = startX + w
endY = startY + h
# 画出来
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
cv2.putText(frame, label, (startX, startY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
# 也可以把结果保存下来
if writer is not None:
writer.write(frame)
# 显示
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# 退出
if key == 27:
break
# 计算FPS
fps.update()
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
if writer is not None:
writer.release()
cv2.destroyAllWindows()
vs.release()