You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
7.9 KiB

//! Mutex (Spin, SpinNoIrq, Thread)
//!
//! Modified from spin::mutex.
//!
//! 一个可替换底层支持的锁框架。
//!
//! # 在此框架下实现了以下几种锁
//!
//! * `SpinLock`: 自旋锁。
//! 等价于`spin::Mutex`相当于Linux中的`spin_lock`。
//! 当获取锁失败时,忙等待。
//! 由于没有禁用内核抢占和中断,在单处理器上使用可能发生死锁。
//!
//! * `SpinNoIrqLock`: 禁止中断的自旋锁。
//! 相当于Linux中的`spin_lock_irqsave`。
//! 在尝试获取锁之前禁用中断在try_lock失败/解锁时恢复之前的中断状态。
//! 可被用于中断处理中,不会发生死锁。
//!
//! * `ThreadLock`: 线程调度锁。
//! 等价于`std::sync::Mutex`,依赖于`thread`模块提供线程调度支持。
//! 在获取锁失败时将自己加入等待队列让出CPU在解锁时唤醒一个等待队列中的线程。
//!
//! # 实现方法
//!
//! 由一个struct提供底层支持它impl trait `MutexSupport`,并嵌入`Mutex`中。
//! `MutexSupport`提供了若干接口,它们会在操作锁的不同时间点被调用。
//! 注意这个接口实际是取了几种实现的并集,并不是很通用。
use crate::arch::interrupt;
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{ATOMIC_BOOL_INIT, AtomicBool, Ordering};
use super::Condvar;
pub type SpinLock<T> = Mutex<T, Spin>;
pub type SpinNoIrqLock<T> = Mutex<T, SpinNoIrq>;
pub type ThreadLock<T> = Mutex<T, Condvar>;
pub struct Mutex<T: ?Sized, S: MutexSupport>
{
lock: AtomicBool,
support: S,
data: UnsafeCell<T>,
}
/// A guard to which the protected data can be accessed
///
/// When the guard falls out of scope it will release the lock.
pub struct MutexGuard<'a, T: ?Sized + 'a, S: MutexSupport + 'a>
{
pub(super) mutex: &'a Mutex<T, S>,
support_guard: S::GuardData,
}
// Same unsafe impls as `std::sync::Mutex`
unsafe impl<T: ?Sized + Send, S: MutexSupport> Sync for Mutex<T, S> {}
unsafe impl<T: ?Sized + Send, S: MutexSupport> Send for Mutex<T, S> {}
impl<T, S: MutexSupport> Mutex<T, S>
{
/// Creates a new spinlock wrapping the supplied data.
///
/// May be used statically:
///
/// ```
/// #![feature(const_fn)]
/// use spin;
///
/// static MUTEX: spin::Mutex<()> = spin::Mutex::new(());
///
/// fn demo() {
/// let lock = MUTEX.lock();
/// // do something with lock
/// drop(lock);
/// }
/// ```
pub fn new(user_data: T) -> Mutex<T, S> {
Mutex {
lock: ATOMIC_BOOL_INIT,
data: UnsafeCell::new(user_data),
support: S::new(),
}
}
/// Consumes this mutex, returning the underlying data.
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let Mutex { data, .. } = self;
data.into_inner()
}
}
impl<T: ?Sized, S: MutexSupport> Mutex<T, S>
{
fn obtain_lock(&self) {
while self.lock.compare_and_swap(false, true, Ordering::Acquire) != false {
// Wait until the lock looks unlocked before retrying
while self.lock.load(Ordering::Relaxed) {
self.support.cpu_relax();
}
}
}
/// Locks the spinlock and returns a guard.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
///
/// ```
/// let mylock = spin::Mutex::new(0);
/// {
/// let mut data = mylock.lock();
/// // The lock is now locked and the data can be accessed
/// *data += 1;
/// // The lock is implicitly dropped
/// }
///
/// ```
pub fn lock(&self) -> MutexGuard<T, S>
{
let support_guard = S::before_lock();
self.obtain_lock();
MutexGuard {
mutex: self,
support_guard,
}
}
/// Force unlock the spinlock.
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing the
/// lock to FFI that doesn't know how to deal with RAII.
///
/// If the lock isn't held, this is a no-op.
pub unsafe fn force_unlock(&self) {
self.lock.store(false, Ordering::Release);
}
/// Tries to lock the mutex. If it is already locked, it will return None. Otherwise it returns
/// a guard within Some.
pub fn try_lock(&self) -> Option<MutexGuard<T, S>> {
let support_guard = S::before_lock();
if self.lock.compare_and_swap(false, true, Ordering::Acquire) == false {
Some(MutexGuard {
mutex: self,
support_guard,
})
} else {
None
}
}
}
impl<T: ?Sized + fmt::Debug, S: MutexSupport + fmt::Debug> fmt::Debug for Mutex<T, S>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Some(guard) => write!(f, "Mutex {{ data: {:?}, support: {:?} }}", &*guard, self.support),
None => write!(f, "Mutex {{ <locked>, support: {:?} }}", self.support),
}
}
}
impl<T: ?Sized + Default, S: MutexSupport> Default for Mutex<T, S> {
fn default() -> Mutex<T, S> {
Mutex::new(Default::default())
}
}
impl<'a, T: ?Sized, S: MutexSupport> Deref for MutexGuard<'a, T, S>
{
type Target = T;
fn deref(&self) -> &T { unsafe { &*self.mutex.data.get() } }
}
impl<'a, T: ?Sized, S: MutexSupport> DerefMut for MutexGuard<'a, T, S>
{
fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.mutex.data.get() } }
}
impl<'a, T: ?Sized, S: MutexSupport> Drop for MutexGuard<'a, T, S>
{
/// The dropping of the MutexGuard will release the lock it was created from.
fn drop(&mut self) {
self.mutex.lock.store(false, Ordering::Release);
self.mutex.support.after_unlock();
}
}
/// Low-level support for mutex
pub trait MutexSupport {
type GuardData;
fn new() -> Self;
/// Called when failing to acquire the lock
fn cpu_relax(&self);
/// Called before lock() & try_lock()
fn before_lock() -> Self::GuardData;
/// Called when MutexGuard dropping
fn after_unlock(&self);
}
/// Spin lock
#[derive(Debug)]
pub struct Spin;
impl MutexSupport for Spin {
type GuardData = ();
fn new() -> Self { Spin }
fn cpu_relax(&self) {
unsafe {
#[cfg(target_arch = "x86_64")]
asm!("pause" :::: "volatile");
#[cfg(target_arch = "riscv32")]
asm!("nop" :::: "volatile");
#[cfg(target_arch = "aarch64")]
asm!("yield" :::: "volatile");
}
}
fn before_lock() -> Self::GuardData {}
fn after_unlock(&self) {}
}
/// Spin & no-interrupt lock
#[derive(Debug)]
pub struct SpinNoIrq;
/// Contains RFLAGS before disable interrupt, will auto restore it when dropping
pub struct FlagsGuard(usize);
impl Drop for FlagsGuard {
fn drop(&mut self) {
unsafe { interrupt::restore(self.0) };
}
}
impl MutexSupport for SpinNoIrq {
type GuardData = FlagsGuard;
fn new() -> Self {
SpinNoIrq
}
fn cpu_relax(&self) {
unsafe {
#[cfg(target_arch = "x86_64")]
asm!("pause" :::: "volatile");
#[cfg(target_arch = "riscv32")]
asm!("nop" :::: "volatile");
#[cfg(target_arch = "aarch64")]
asm!("yield" :::: "volatile");
}
}
fn before_lock() -> Self::GuardData {
FlagsGuard(unsafe { interrupt::disable_and_store() })
}
fn after_unlock(&self) {}
}
impl MutexSupport for Condvar {
type GuardData = ();
fn new() -> Self {
Condvar::new()
}
fn cpu_relax(&self) {
self._wait();
}
fn before_lock() -> Self::GuardData {}
fn after_unlock(&self) {
self.notify_one();
}
}