use alloc::BTreeMap; use core::fmt::{Debug, Error, Formatter}; use super::process::*; use super::scheduler::*; use util::{EventHub, GetMut2}; pub struct Processor { procs: BTreeMap, current_pid: Pid, event_hub: EventHub, /// Choose what on next schedule ? next: Option, // WARNING: if MAX_PROCESS_NUM is too large, will cause stack overflow scheduler: RRScheduler, } // TODO: 除schedule()外的其它函数,应该只设置进程状态,不应调用schedule impl Processor { pub fn new() -> Self { Processor { procs: BTreeMap::::new(), current_pid: 0, event_hub: EventHub::new(), next: None, // NOTE: max_time_slice <= 5 to ensure 'priority' test pass scheduler: RRScheduler::new(5), } } pub fn lab6_set_priority(&mut self, priority: u8) { unimplemented!(); // self.scheduler.set_priority(self.current_pid, priority); } pub fn set_reschedule(&mut self) { let pid = self.current_pid; self.set_status(pid, Status::Ready); } fn alloc_pid(&self) -> Pid { let mut next: Pid = 0; for &i in self.procs.keys() { if i != next { return next; } else { next = i + 1; } } return next; } fn set_status(&mut self, pid: Pid, status: Status) { let status0 = self.get(pid).status.clone(); match (&status0, &status) { (&Status::Ready, &Status::Ready) => return, (&Status::Ready, _) => self.scheduler.remove(pid), (_, &Status::Ready) => self.scheduler.insert(pid), _ => {} } trace!("process {} {:?} -> {:?}", pid, status0, status); self.get_mut(pid).status = status; } /// Called by timer. /// Handle events. pub fn tick(&mut self) { let current_pid = self.current_pid; if self.scheduler.tick(current_pid) { self.set_reschedule(); } self.event_hub.tick(); while let Some(event) = self.event_hub.pop() { debug!("event {:?}", event); match event { Event::Schedule => { self.event_hub.push(10, Event::Schedule); self.set_reschedule(); }, Event::Wakeup(pid) => { self.set_status(pid, Status::Ready); self.set_reschedule(); self.next = Some(pid); }, } } } pub fn get_time(&self) -> usize { self.event_hub.get_time() } pub fn add(&mut self, mut process: Process) -> Pid { let pid = self.alloc_pid(); process.pid = pid; if process.status == Status::Ready { self.scheduler.insert(pid); } self.procs.insert(pid, process); pid } /// Called every interrupt end /// Do schedule ONLY IF current status != Running pub fn schedule(&mut self) { if self.current().status == Status::Running { return; } let pid = self.next.take().unwrap_or_else(|| self.scheduler.select().unwrap()); self.switch_to(pid); } /// Switch process to `pid`, switch page table if necessary. /// Store `rsp` and point it to target kernel stack. /// The current status must be set before, and not be `Running`. fn switch_to(&mut self, pid: Pid) { // for debug print let pid0 = self.current_pid; if pid == self.current_pid { if self.current().status != Status::Running { self.set_status(pid, Status::Running); } return; } self.current_pid = pid; let (from, to) = self.procs.get_mut2(pid0, pid); assert_ne!(from.status, Status::Running); assert_eq!(to.status, Status::Ready); to.status = Status::Running; self.scheduler.remove(pid); info!("switch from {} to {} {:x?}", pid0, pid, to.context); unsafe { // FIXME: safely pass MutexGuard use core::mem::forget; super::PROCESSOR.try().unwrap().force_unlock(); from.context.switch(&mut to.context); forget(super::PROCESSOR.try().unwrap().lock()); } } fn get(&self, pid: Pid) -> &Process { self.procs.get(&pid).unwrap() } fn get_mut(&mut self, pid: Pid) -> &mut Process { self.procs.get_mut(&pid).unwrap() } pub fn current(&self) -> &Process { self.get(self.current_pid) } pub fn current_pid(&self) -> Pid { self.current_pid } pub fn kill(&mut self, pid: Pid) { self.exit(pid, 0x1000); // TODO: error code for killed } pub fn exit(&mut self, pid: Pid, error_code: ErrorCode) { info!("{} exit, code: {}", pid, error_code); self.set_status(pid, Status::Exited(error_code)); if let Some(waiter) = self.find_waiter(pid) { info!(" then wakeup {}", waiter); self.set_status(waiter, Status::Ready); self.switch_to(waiter); // yield } } pub fn sleep(&mut self, pid: Pid, time: usize) { self.set_status(pid, Status::Sleeping); self.event_hub.push(time, Event::Wakeup(pid)); } pub fn sleep_(&mut self, pid: Pid) { self.set_status(pid, Status::Sleeping); } pub fn wakeup_(&mut self, pid: Pid) { self.set_status(pid, Status::Ready); } /// Let current process wait for another pub fn current_wait_for(&mut self, pid: Pid) -> WaitResult { info!("current {} wait for {:?}", self.current_pid, pid); if self.procs.values().filter(|&p| p.parent == self.current_pid).next().is_none() { return WaitResult::NotExist; } let pid = self.try_wait(pid).unwrap_or_else(|| { let current_pid = self.current_pid; self.set_status(current_pid, Status::Waiting(pid)); self.schedule(); // yield self.try_wait(pid).unwrap() }); let exit_code = self.get(pid).exit_code().unwrap(); info!("{} wait end and remove {}", self.current_pid, pid); self.procs.remove(&pid); WaitResult::Ok(pid, exit_code) } /// Try to find a exited wait target fn try_wait(&mut self, pid: Pid) -> Option { match pid { 0 => self.procs.values() .find(|&p| p.parent == self.current_pid && p.exit_code().is_some()) .map(|p| p.pid), _ => self.get(pid).exit_code().map(|_| pid), } } fn find_waiter(&self, pid: Pid) -> Option { self.procs.values().find(|&p| { p.status == Status::Waiting(pid) || (p.status == Status::Waiting(0) && self.get(pid).parent == p.pid) }).map(|ref p| p.pid) } } impl Debug for Processor { fn fmt(&self, f: &mut Formatter) -> Result<(), Error> { f.debug_map() .entries(self.procs.iter().map(|(pid, proc0)| { (pid, &proc0.name) })) .finish() } } #[derive(Debug)] pub enum WaitResult { /// The target process is exited with `ErrorCode`. Ok(Pid, ErrorCode), /// The target process is not exist. NotExist, } #[derive(Debug)] enum Event { Schedule, Wakeup(Pid), } impl GetMut2 for BTreeMap { type Output = Process; fn get_mut(&mut self, id: Pid) -> &mut Process { self.get_mut(&id).unwrap() } }