use alloc::{boxed::Box, collections::BTreeMap, string::String, sync::Arc, sync::Weak, vec::Vec}; use core::fmt; use core::str; use log::*; use rcore_memory::PAGE_SIZE; use rcore_thread::Tid; use spin::RwLock; use xmas_elf::{ header, program::{Flags, SegmentData, Type}, ElfFile, }; use crate::arch::interrupt::{Context, TrapFrame}; use crate::fs::{FileHandle, FileLike, OpenOptions, FOLLOW_MAX_DEPTH}; use crate::memory::{ ByFrame, Delay, File, GlobalFrameAlloc, KernelStack, MemoryAttr, MemorySet, Read, }; use crate::sync::{Condvar, SpinNoIrqLock as Mutex}; use super::abi::{self, ProcInitInfo}; use core::mem::uninitialized; use rcore_fs::vfs::INode; pub struct Thread { context: Context, kstack: KernelStack, /// Kernel performs futex wake when thread exits. /// Ref: [http://man7.org/linux/man-pages/man2/set_tid_address.2.html] pub clear_child_tid: usize, // This is same as `proc.vm` pub vm: Arc>, pub proc: Arc>, } /// Pid type /// For strong type separation #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)] pub struct Pid(usize); impl Pid { pub fn get(&self) -> usize { self.0 } /// Return whether this pid represents the init process pub fn is_init(&self) -> bool { self.0 == 0 } } impl fmt::Display for Pid { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.0) } } pub struct Process { // resources pub vm: Arc>, pub files: BTreeMap, pub cwd: String, pub exec_path: String, futexes: BTreeMap>, // relationship pub pid: Pid, // i.e. tgid, usually the tid of first thread pub parent: Option>>, pub children: Vec>>, pub threads: Vec, // threads in the same process // for waiting child pub child_exit: Arc, // notified when the a child process is going to terminate pub child_exit_code: BTreeMap, // child process store its exit code here } /// Records the mapping between pid and Process struct. lazy_static! { pub static ref PROCESSES: RwLock>>> = RwLock::new(BTreeMap::new()); } /// Let `rcore_thread` can switch between our `Thread` impl rcore_thread::Context for Thread { unsafe fn switch_to(&mut self, target: &mut rcore_thread::Context) { use core::mem::transmute; let (target, _): (&mut Thread, *const ()) = transmute(target); self.context.switch(&mut target.context); } fn set_tid(&mut self, tid: Tid) { let mut proc = self.proc.lock(); // add it to threads proc.threads.push(tid); } } impl Thread { /// Make a struct for the init thread pub unsafe fn new_init() -> Box { Box::new(Thread { context: Context::null(), // safety: other fields will never be used ..core::mem::uninitialized() }) } /// Make a new kernel thread starting from `entry` with `arg` pub fn new_kernel(entry: extern "C" fn(usize) -> !, arg: usize) -> Box { let vm = MemorySet::new(); let vm_token = vm.token(); let vm = Arc::new(Mutex::new(vm)); let kstack = KernelStack::new(); Box::new(Thread { context: unsafe { Context::new_kernel_thread(entry, arg, kstack.top(), vm_token) }, kstack, clear_child_tid: 0, vm: vm.clone(), // TODO: kernel thread should not have a process proc: Process { vm, files: BTreeMap::default(), cwd: String::from("/"), exec_path: String::new(), futexes: BTreeMap::default(), pid: Pid(0), parent: None, children: Vec::new(), threads: Vec::new(), child_exit: Arc::new(Condvar::new()), child_exit_code: BTreeMap::new(), } .add_to_table(), }) } /// Construct virtual memory of a new user process from ELF `data`. /// Return `(MemorySet, entry_point, ustack_top)` pub fn new_user_vm( inode: &Arc, exec_path: &str, mut args: Vec, envs: Vec, ) -> Result<(MemorySet, usize, usize), &'static str> { // Read ELF header // 0x3c0: magic number from ld-musl.so let mut data: [u8; 0x3c0] = unsafe { uninitialized() }; inode .read_at(0, &mut data) .map_err(|_| "failed to read from INode")?; // Parse ELF let elf = ElfFile::new(&data)?; // Check ELF type match elf.header.pt2.type_().as_type() { header::Type::Executable => {} header::Type::SharedObject => {} _ => return Err("ELF is not executable or shared object"), } // Check ELF arch match elf.header.pt2.machine().as_machine() { #[cfg(target_arch = "x86_64")] header::Machine::X86_64 => {} #[cfg(target_arch = "aarch64")] header::Machine::AArch64 => {} #[cfg(any(target_arch = "riscv32", target_arch = "riscv64"))] header::Machine::Other(243) => {} #[cfg(target_arch = "mips")] header::Machine::Mips => {} _ => return Err("invalid ELF arch"), } // Check interpreter (for dynamic link) if let Ok(loader_path) = elf.get_interpreter() { // assuming absolute path let inode = crate::fs::ROOT_INODE .lookup_follow(loader_path, FOLLOW_MAX_DEPTH) .map_err(|_| "interpreter not found")?; // modify args for loader args[0] = exec_path.into(); args.insert(0, loader_path.into()); // Elf loader should not have INTERP // No infinite loop return Thread::new_user_vm(&inode, exec_path, args, envs); } // Make page table let mut vm = elf.make_memory_set(inode); // User stack use crate::consts::{USER_STACK_OFFSET, USER_STACK_SIZE}; let mut ustack_top = { let ustack_buttom = USER_STACK_OFFSET; let ustack_top = USER_STACK_OFFSET + USER_STACK_SIZE; vm.push( ustack_buttom, ustack_top - PAGE_SIZE * 4, MemoryAttr::default().user(), Delay::new(GlobalFrameAlloc), "user_stack_delay", ); // We are going to write init info now. So map the last 4 pages eagerly. vm.push( ustack_top - PAGE_SIZE * 4, ustack_top, MemoryAttr::default().user(), ByFrame::new(GlobalFrameAlloc), "user_stack", ); ustack_top }; // Make init info let init_info = ProcInitInfo { args, envs, auxv: { let mut map = BTreeMap::new(); if let Some(phdr_vaddr) = elf.get_phdr_vaddr() { map.insert(abi::AT_PHDR, phdr_vaddr as usize); } map.insert(abi::AT_PHENT, elf.header.pt2.ph_entry_size() as usize); map.insert(abi::AT_PHNUM, elf.header.pt2.ph_count() as usize); map.insert(abi::AT_PAGESZ, PAGE_SIZE); map }, }; unsafe { vm.with(|| ustack_top = init_info.push_at(ustack_top)); } trace!("{:#x?}", vm); let entry_addr = elf.header.pt2.entry_point() as usize; Ok((vm, entry_addr, ustack_top)) } /// Make a new user process from ELF `data` pub fn new_user( inode: &Arc, exec_path: &str, args: Vec, envs: Vec, ) -> Box { let (vm, entry_addr, ustack_top) = Self::new_user_vm(inode, exec_path, args, envs).unwrap(); let vm_token = vm.token(); let vm = Arc::new(Mutex::new(vm)); let kstack = KernelStack::new(); let mut files = BTreeMap::new(); files.insert( 0, FileLike::File(FileHandle::new( crate::fs::STDIN.clone(), OpenOptions { read: true, write: false, append: false, nonblock: false, }, String::from("stdin"), )), ); files.insert( 1, FileLike::File(FileHandle::new( crate::fs::STDOUT.clone(), OpenOptions { read: false, write: true, append: false, nonblock: false, }, String::from("stdout"), )), ); files.insert( 2, FileLike::File(FileHandle::new( crate::fs::STDOUT.clone(), OpenOptions { read: false, write: true, append: false, nonblock: false, }, String::from("stderr"), )), ); Box::new(Thread { context: unsafe { Context::new_user_thread(entry_addr, ustack_top, kstack.top(), vm_token) }, kstack, clear_child_tid: 0, vm: vm.clone(), proc: Process { vm, files, cwd: String::from("/"), exec_path: String::from(exec_path), futexes: BTreeMap::default(), pid: Pid(0), parent: None, children: Vec::new(), threads: Vec::new(), child_exit: Arc::new(Condvar::new()), child_exit_code: BTreeMap::new(), } .add_to_table(), }) } /// Fork a new process from current one pub fn fork(&self, tf: &TrapFrame) -> Box { let kstack = KernelStack::new(); let vm = self.vm.lock().clone(); let vm_token = vm.token(); let vm = Arc::new(Mutex::new(vm)); let context = unsafe { Context::new_fork(tf, kstack.top(), vm_token) }; let mut proc = self.proc.lock(); let new_proc = Process { vm: vm.clone(), files: proc.files.clone(), cwd: proc.cwd.clone(), exec_path: proc.exec_path.clone(), futexes: BTreeMap::default(), pid: Pid(0), parent: Some(self.proc.clone()), children: Vec::new(), threads: Vec::new(), child_exit: Arc::new(Condvar::new()), child_exit_code: BTreeMap::new(), } .add_to_table(); // link to parent proc.children.push(Arc::downgrade(&new_proc)); Box::new(Thread { context, kstack, clear_child_tid: 0, vm, proc: new_proc, }) } /// Create a new thread in the same process. pub fn clone( &self, tf: &TrapFrame, stack_top: usize, tls: usize, clear_child_tid: usize, ) -> Box { let kstack = KernelStack::new(); let vm_token = self.vm.lock().token(); Box::new(Thread { context: unsafe { Context::new_clone(tf, stack_top, kstack.top(), vm_token, tls) }, kstack, clear_child_tid, vm: self.vm.clone(), proc: self.proc.clone(), }) } } impl Process { /// Assign a pid and put itself to global process table. fn add_to_table(mut self) -> Arc> { let mut process_table = PROCESSES.write(); // assign pid let pid = (0..) .find(|i| match process_table.get(i) { Some(p) if p.upgrade().is_some() => false, _ => true, }) .unwrap(); self.pid = Pid(pid); // put to process table let self_ref = Arc::new(Mutex::new(self)); process_table.insert(pid, Arc::downgrade(&self_ref)); self_ref } fn get_free_fd(&self) -> usize { (0..).find(|i| !self.files.contains_key(i)).unwrap() } /// Add a file to the process, return its fd. pub fn add_file(&mut self, file_like: FileLike) -> usize { let fd = self.get_free_fd(); self.files.insert(fd, file_like); fd } pub fn get_futex(&mut self, uaddr: usize) -> Arc { if !self.futexes.contains_key(&uaddr) { self.futexes.insert(uaddr, Arc::new(Condvar::new())); } self.futexes.get(&uaddr).unwrap().clone() } } trait ToMemoryAttr { fn to_attr(&self) -> MemoryAttr; } impl ToMemoryAttr for Flags { fn to_attr(&self) -> MemoryAttr { let mut flags = MemoryAttr::default().user(); if self.is_execute() { flags = flags.execute(); } if !self.is_write() { flags = flags.readonly(); } flags } } /// Helper functions to process ELF file trait ElfExt { /// Generate a MemorySet according to the ELF file. fn make_memory_set(&self, inode: &Arc) -> MemorySet; /// Get interpreter string if it has. fn get_interpreter(&self) -> Result<&str, &str>; /// Get virtual address of PHDR section if it has. fn get_phdr_vaddr(&self) -> Option; } impl ElfExt for ElfFile<'_> { fn make_memory_set(&self, inode: &Arc) -> MemorySet { debug!("creating MemorySet from ELF"); let mut ms = MemorySet::new(); for ph in self.program_iter() { if ph.get_type() != Ok(Type::Load) { continue; } ms.push( ph.virtual_addr() as usize, ph.virtual_addr() as usize + ph.mem_size() as usize, ph.flags().to_attr(), File { file: INodeForMap(inode.clone()), mem_start: ph.virtual_addr() as usize, file_start: ph.offset() as usize, file_end: ph.offset() as usize + ph.file_size() as usize, allocator: GlobalFrameAlloc, }, "elf", ); } ms } fn get_interpreter(&self) -> Result<&str, &str> { let header = self .program_iter() .filter(|ph| ph.get_type() == Ok(Type::Interp)) .next() .ok_or("no interp header")?; let mut data = match header.get_data(self)? { SegmentData::Undefined(data) => data, _ => unreachable!(), }; // skip NULL while let Some(0) = data.last() { data = &data[..data.len() - 1]; } let path = str::from_utf8(data).map_err(|_| "failed to convert to utf8")?; Ok(path) } fn get_phdr_vaddr(&self) -> Option { if let Some(phdr) = self .program_iter() .find(|ph| ph.get_type() == Ok(Type::Phdr)) { // if phdr exists in program header, use it Some(phdr.virtual_addr()) } else if let Some(elf_addr) = self .program_iter() .find(|ph| ph.get_type() == Ok(Type::Load) && ph.offset() == 0) { // otherwise, check if elf is loaded from the beginning, then phdr can be inferred. Some(elf_addr.virtual_addr() + self.header.pt2.ph_offset()) } else { warn!("elf: no phdr found, tls might not work"); None } } } #[derive(Clone)] pub struct INodeForMap(pub Arc); impl Read for INodeForMap { fn read_at(&self, offset: usize, buf: &mut [u8]) -> usize { self.0.read_at(offset, buf).unwrap() } }