sonar

xiaomil
not provided

java:Sonar way
xml:Sonar way
2023-03-30

sonar

xiaomil

Sonar Report

1. xiaomil
1.1. #hAR
1.2. [T
1.3. [ARAFIS
14 RERE

H=x

Page 1

53

sonar xiaomil Sonar Report

1. xiaomil

SR TIRERE | B 7 SMBRERXNEEZRETR. RF2RDEFAIER B
SERuhH—S &I,

IRERITIR Soxiaomil , AERGETE/92023-03-30 , EFHEMIREE B java:Sonar way xml:Sonar
way , it 5035KN.

1.1. §hA
YmABIa)ER
Bug AIEEHEE T
10 1h40min
PG ZEEETE
4 40min
PRIKIE RS
258 1dOh47min
272 AN =G5 272
BE B 0
AT 0
I=F)RR 0
HNMeSrIa)Em 0
EfRAYEIRT 0
EipRAYIEIRR 0
RERT 3
f=:] 51
= 43
IRE 162
AN 13
S waKIil
IB#E

sonar

xiaomil

Sonar Report

9720 17%
RAB(THR i
=
A4
B3R
BE517(%)
1325 N4
S
7.9 ERETE
FERR(%)

1.2. [T

13249
471
66
94
N/A
2.2

33.1

829

BEREZEFHINTOP10

Modifiers should be declared in the
correct order

65

The diamond operator ("<>") should
be used

26

Cognitive Complexity of methods |21
should not be too high

String literals should not be 17
duplicated

Track uses of "TODO" tags 13

Utility classes should not have public
constructors

12

"private" methods called only by 7
inner classes should be moved to
those classes

Boolean literals should not be 7

redundant

Class variable fields should not have
public accessibility

6

Mutable fields should not be "public
static”

6

sonar

xiaomil

Sonar Report

Eﬁﬂﬁagﬁ’ggﬁtm%

GTaskStringUtils.java 47
NotesListActivity.java 26
GTaskManager.java 20
NoteEditActivity.java 17
NotesListAdapter.java 16

SHRERBHIITOPS

NotesListActivity.java 151
NoteEditActivity.java 129
GTaskManager.java 113
SqlNote.java 96
DateTimePicker.java 79
BETEZH TOP5
GTaskManager.java 94
Task.java 73
TaskList.java 73
DataUtils.java 31
GTaskClient.java 24

1.3. [A&iFE

|%W,EU |Modifiers should be declared in the correct order

sonar

xiaomil Sonar Report

FNFEIA The Java Language Specification recommends listing modifiers in
the following order:
Annotations
public
protected
private
abstract
static
final
transient
volatile
synchronized
native
default
strictfp
Not following this convention has no technical impact, but will
reduce the code’s readability because most developers are used to
the standard
order. _
Noncompliant Code Example
ftatic public void main(String[] args) { // Noncompliant
Compliant Solution
[)ublic static void main(String[] args) { // Compliant
MAEEFR BT
MetaData.java 29
GTaskSyncService.java 27, 29, 31, 33, 35, 37,
39
GTaskStringUtils.java 21, 23, 25, 27, 29, 31,
33, 35, 37, 39, 41, 43,
45, 47, 49, 51, 53, 55,
57,59, 61, 63, 65, 67,
69, 71, 73, 75, 77, 79,
81, 83, 85, 87, 89, 91,
93, 95, 97, 99, 101,
103, 105, 107, 109, 111
ResourceParser.java 43, 51, 78, 86, 94, 102,
132,144,158
NotesListActivity.java 135, 136

Bl

|The diamond operator ("<>") should be used

sonar

xiaomil Sonar Report

HINHEA Java 7 introduced the diamond operator (<>) to reduce the
\éerl?osity of generics code. For instance, instead of having to
eclare
a List's type in both its declaration and its constructor, you can
now simplify the constructor declaration with <>,
and the compiler will infer the type.
Note that this rule is automatically disabled when the project’s
sonar.java.source is lower than 7.
Noncompliant Code Example
List<String> strings = new ArrayList<String>(); // Noncompliant
Map<String,List<Integer>> map = new
HashMap <String, List<Integer>>(); // Noncompliant
Compliant Solution
List<String> strings = new ArrayList<>();
Map <String, List<Integer>> map = new HashMap<>();
MAEEFR BT
Contact.java 41
SalNote.java 143,151, 162
TaskList.java 42
GTaskClient.java 334
GTaskManager.java 93, 94, 95, 97, 98, 99
Note.java 189
DataUtils.java 50, 90, 210
NoteEditActivity.java 87, 96, 105, 113, 591
NoteEditText.java 49
NotesListActivity.java 515
NotesListAdapter.java 48, 93, 109

#0) _ [Cognitive Complexity of methods should not be too high
A Cognitive Complexity is a measure of how hard the control flow of
a method is to understand. Methods with high Cognitive
Complexity will be
difficult to maintain.
Exceptions
equals and hashCode methods are ignored because they might
be automatically generated and might end up being difficult to
uSnderstand, especially in presence of many fields.
ee
Cognitive Complexity
HRFR ERAT
SalData.java 147
SalNote.java 229, 443
Task.java 261
GTaskManager.java 171, 250, 354, 525, 622

sonar xiaomil Sonar Report

Note.java 181
BackupUtils.java 168, 221
NoteEditActivity.java 182
NoteltemData.java 112
NotesListActivity.java 160, 472, 582, 881
NotesListltem.java 51
NotesPreferenceActivity.java 92
NoteWidgetProvider.java 72

Sl |Strinq literals should not be duplicated

FRNHEA Duplicated string literals make the process of refactoring error-
prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many
places, but only need to be updated in a single place.
Noncompliant Code Example

With the default threshold of 3:

public void run() {

prepare("actionl”); // Noncompliant - "actionl
is duplicated 3 times

execute("actionl");

release("actionl");

@SuppressWarning("all") // Compliant -
annotations are excluded

private void method1() { /* ... */ }
@SuppressWarning("all")

private void method2() { /* ... */ }

public String method3(String a) {
System.out.printin(""" + a + "'"); // Compliant - literal
has less than 5 characters and is excluded

return ""; _ // Compliant - literal
than 5 characters and is excluded

}

has less

Compliant Solution
private static final String ACTION_1 = "actionl"; // Compliant

public void run() {
prepare(ACTION_1); // Compliant
execute(ACTION_1);
release(ACTION_1);

}

Exceptions . - .)
To prevent generating some false-positives, literals having less
than 5 characters are excluded.

XIHEFR BT
Notes.java 57

xiaomil

sonar

Sonar Report

NotesDatabaseHelper.java

48, 51, 55, 91, 92, 93,
94, 94, 106, 127, 142

NotesProvider.java

142

GTaskManager.java 297
Note.java 63
DataUtils.java 68, 120

Sl |Track uses of "TODQ" tags
FRNHEA TODO tags are commonly used to mark places where some

more code Is required, but which the developer wants to

implement later.

Sometimes the developer will not have the time or will simply

forget to get back to that taﬁ.

This rule is meant to track those tags and to ensure that they do

not go unnoticed.

Noncompliant Code Example

void doSomething() {

// TODO

}

See

MITRE, CWE-546 - Suspicious Comment

A4FTR BT
NotesProvider.java 301
AlarmAlertActivity.java 108, 111, 114, 117
FoldersListAdapter.java 43
NoteEditActivity.java 292
NoteEditText.java 99
NotesListActivity.java 187, 290, 295, 648, 661

|¥)|'|me |Uti|ity classes should not have public constructors

sonar

xiaomil Sonar Report

FNFEIA Utility classes, which are collections of static members, are not
meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors. _

Java adds an implicit public constructor to every class which does
not define at least one explicitly. Hence, at least one non-public
constructor
should be defined.

Noncompliant Code Example
class StringUtils { // Noncompliant

public static String concatenate(String s1, String s2) {

}return sl + s2;
}

Compliant Solution
class StringUtils { // Compliant

private Strin?UtiIs() {

throw new IllegalStateException("Utility class");
public static String concatenate(String s1, String s2) {
return sl + s2;

}

Exceptions)) o))

When class contains public static void main(String[] args)
n}:_ethod it is not considered as utility class and will be ignored by
this

rule.

AR FR ERAT

BuildConfig.java 6

Contact.java 28

Notes.java 49, 244, 260

DataUtils.java 38

GTaskStringUtils.java 19

ResourceParser.java 25,42, 77,131, 157

|¥)”me |Boo|ean literals should not be redundant

sonar

xiaomil

Sonar

Report

FNFEIA Redundant Boolean literals should be removed from expressions

to improve readability.

Noncompliant Code Example

if (booleanMethod() == true) { /* ... */ }

if (booleanMethod() == false) { /* ... */}

if (booleanMethod() || false) { /* ... */ }

doSomething(!false);

doSomething(booleanMethod() == true);

booleanVariable = booleanMethod() ? true : false;

booleanVariable = booleanMethod() ? true : exp;

booleanVariable = booleanMethod() ? false : exp;

booleanVariable = booleanMethod() ? exp : true;

booleanVariable = booleanMethod() ? exp : false;

Compliant Solution

if (booleanMethod()) { /* ... */}

if !lbooleanMethod()) {/* ... */}

if (booleanMethod()) { /* ... */}

doSomething(true);

doSomething(booleanMethod());

booleanVariable = booleanMethod();

booleanVariable = booleanMethod() || exp;

booleanVariable = !'booleanMethod() && exp;

booleanVariable = !booleanMethod() || exp;

booleanVariable = booleanMethod() && exp;
XHER BT
WorkingNote.java 298
NoteltemData.java 84,113,114
NotesListAdapter.java 95, 111, 139
ARy "private" methods called only by inner classes should be moved to those

classes

sonar

xiaomil Sonar Report

FNFEIA When a private method is only invoked by an inner class, there’s
no reason not to move it into that class. It will still have the same
access to the outer class' members, but the outer class will be
clearer and less cluttered.

Noncompliant Code Example
public class Outie {
private int i=0;
private void increment() { // Noncompliant
i++;
}
public class Innie {
public void doTheThing() {
} Outie.this.increment();
}
}
Compliant Solution
public class Outie {
private int i=0;
public class Innie {
public void doTheThing() {
increment();
private void increment() {
} Outie.this.i++;
}
}

X{HEFR ERAT

BackupUtils.java 72,315

DateTimePicker.java 351

NotesListActivity.java 444, 472, 536, 920

|¥)|'|me |Class variable fields should not have public accessibility |

10

sonar xiaomil Sonar Report

AR A Public class variable fields do not respect the encapsulation
principle and has three main disadvantages:

Additional behavior such as validation cannot be added.

The internal representation is exposed, and cannot be changed
afterwards.

Member values are subject to change from anywhere in the
code and may not meet the programmer’s assumptions.

By using private attributes and accessor methods (set and get),
unauthorized modifications are prevented.
Noncompliant Code Example

public class MyClass {

public static final int SOME_CONSTANT = 0; // Compliant -
constants are not checked

public String firstName; // Noncompliant
}

Compliant Solution
public class MyClass {

public static final int SOME_CONSTANT = 0; // Compliant -
constants are not checked

private String firstName; // Compliant

public String getFirstName() {
return firstName;

public void setFirstName(String firstName) {
this.firstName = firstName;

}

Exceptions
Because they are not modifiable, this rule ignores public final
fields. Also, annotated fields, whatever the annotation(s) will be
ignored, as annotations are often used by injection frameworks,
vghich in exchange require having public fields.

ee

MITRE, CWE-493 - Critical Public Variable Without Final

Modifier
AR FR EHT
NoteEditActivity.java 78, 80, 82, 84
NotesListAdapter.java 42. 43

|¥)ﬂumu |Mutab|e fields should not be "public static"

sonar

xiaomil Sonar Report

A There is no good reason to have a mutable object as the public
(by default), static member of an interface . o
Such variables should be moved into classes and their visibility
lowered.
Similarly, mutable static members of classes and enumerations
which are accessed directly, rather than through getters and
setters,
should be protected to the degree possible. That can be done by
reducing visibility or makin? the field final if appropriate.
Note that making a mutable field, such as an array, final will
keep the variable from being reassigned, but doing so has no
effect on
the mutability of the internal state of the array (i.e. it doesn’t
accomplish the goal).) _ _
This rule raises issues for public static array, Collection, Date,
and awt.Point members.
Noncompliant Code Example
public interface MyInterface {
public static String [] strings; // Noncompliant
public class A {
I\Fublic static String [] stringsl = {"first","second"}; //
oncompliant
ublic static String [] strings2 = {"first","second"}; //
oncompliant . _ _
I\Joubllc static List<String> strings3 = new ArrayList<>(); //
oncompliant
/] ...
}
See
MITRE, CWE-582 - Array Declared Public, Final, and Static
Ob'MITRE' CWE-607 - Public Static Final Field References Mutable
ject
CERT, OBJO1-J. - Limit accessibility of fields _
CERT, OBJ13-J. - Ensure that references to mutable objects are
not exposed
X4EFR ERAT
SalData.java 43
SalNote.java 46
WorkingNote.java 65, 75
FoldersListAdapter.java 33
NoteWidgetProvider.java 36

Ry Return of boolean expressions should not be wrapped into an "if-then-
else" statement

12

sonar

xiaomil Sonar Report

FNFEIA Return of boolean literal statements wrapped into if-then-else
ones should be simplified.
Similarly, method invocations wrapped into if-then-else differing
only from boolean literals should be simplified into a single
invocation.
Noncompliant Code Example
boolean foo(Object param) {
if (expression) { // Noncompliant
bar{p))aram, true, "qix");
} else {
bar(param, false, "qix");
if (expression) { // Noncompliant
return true;
} else {
} return false;
}
Compliant Solution
boolean foo(Object param) {
bar(param, expression, "qix");
return expression;
HRFR ERAT
Note.java 125
WorkingNote.java 220
NoteEditActivity.java 357
NoteEditText.java 173
NotesListActivity.java 653

|fmmu |Empty statements should be removed

13

sonar

xiaomil Sonar Report

FNFEIA Empty statements, i.e. ;, are usually introduced by mistake, for
example because:
It was meant to be replaced by an actual statement, but this was
forgotten.
ere was a typo which lead the semicolon to be doubled, i.e. ;;
Noncompliant Code Example
void doSomething() {
; // Noncompliant - was used as
? kind of TODO marker
void doSomethin?EIse() {
System.out.printIn("Hello, world!");; // Noncompliant
- double ;
.
Compliant Solution
void doSomething() {}
void doSometh_ing[;EIse() {
System.out.printin("Hello, world!");
for (inti=0;i<3;i++);// compliant if unique statement of a
loop
.
See
CERT, MSC12-C. - Detect and remove code that has no effect
or is never executed
CERT, MSC51-J. - Do not place a semicolon immediately
following an if, for, or while
condition
CERT, EXP15-C. - Do not place a semicolon on the same line as
an if, for, or while
statement
MHFTR BT
NoteEditActivity.java 312, 386
NotesListActivity.java 96, 409
NotesListAdapter.java 44

|fmmu |Co||apsib|e "if" statements should be merged

14

sonar

xiaomil Sonar

Repor t

FNFEIA Merging collapsible if statements increases the code’s
readability.
Noncompliant Code Example
if#file I= null)
i /(jile.ﬂi;FiIe() | file.isDirectory()) {
o
}
Compliant Solution
if/(jilei}/z null && isFileOrDirectory(file)) {
e
private static boolean isFileOrDirectory(File file) {
} return file.isFile() || file.isDirectory();
XHEFR EHT
GTaskManager.java 136, 341
WorkingNote.java 193
DataUtils.java 126
NotesListAdapter.java 85

|¥)|'|me |Catches should be combined

15

sonar

xiaomil Sonar Report

AR A

MHERR

Since Java 7 it has been possible to catch multiple exceptions at
ohnce. Therefore, when multiple catch blocks have the same code,
the
ShO)l/J|d be combined for better readabilit)é.

Note that this rule is automatically disabled when the project’s
sonar.java.source is lower than 7.

Noncompliant Code Example

catch (IOException e) {
doCleanup();
logger.log(e);

catch (SQLException e) { // Noncompliant
doCleanup();

} logger.log(e);

catch (TimeoutException e) { // Compliant; block contents are
different

doCleanup();

throw e;

Compliant Solution

catch (IOException|SQLException e) {
doCleanup();

logger.log(e);

catch (TimeoutException e) {
doCleanup();
throw e;

}

EAUT

BackupUtils.java

304, 336

AlarmAlertActivity.java 110, 113, 116

MU [Anonym
lambdas

ous inner classes containing only one method should become

16

sonar

xiaomil Sonar Report

AR A

MHBER

Before Java 8, the only way to partially support closures in Java
was by using anonymous inner classes. But the syntax of
anonymous classes may
seem unwieldy and unclear.

With Java 8, most uses of anonymous inner classes should be
replaced by lambdas to highly increase the readability of the
source code.

Note that this rule is automatically disabled when the project’s
sonar.java.source is lower than 8.

Noncompliant Code Example

myCollection.stream().map(new Mapper<String,String>() {
public String map(String input) {
return new StringBuilder(input).reverse().toString();

}
D;
Predicate<Strin%> isEmpty = new Predicate<String> {

boolean test(String myString) {
return myString.iIsEmpty();

}
Compliant Solution

myCollection.stream().map(input -> new
StringBuilder(input).reverse().toString());

Predicate<String> isEmpty = myString -> myString.isEmpty();

BT

GTaskASyncTask.java 119

GTaskSyncService.java 47

NotesPreferenceActivity.java 306, 333

|¥)|'|me |"static" base class members should not be accessed via derived types

17

sonar

xiaomil Sonar Report

AR A

MR

In the interest of code clarity, static members of a base class
should never be accessed usmP a derived type’s name.

Doing so is confusing and could create the illusion that two
different static members exist.

Noncompliant Code Example

class Parent {
public static int counter;

class Child extends Parent {

public Child() {

}Chl|d .counter++; // Noncompliant
}

Compliant Solution

class Parent {
public static int counter;

class Child extends Parent {
public Child() {
\ Parent.counter++;

}

EAUT

DataUtils.java

230, 230, 248, 249

Ay Declarations should use Java collection interfaces such as "List" rather than
specific implementation classes such as "LinkedList"

18

sonar xiaomil Sonar

Report

A The purpose of the Java Collections API is to provide a well
gefinled ierarchy of interfaces in order to hide implementation
etalls.
Implementing classes must be used to instantiate new collections,
but the result of an instantiation should ideally be stored in a
variable whose
t1yﬁe is a Java Collection interface.
is rule raises an issue when an implementation class:
is returned from a public method.
is accepted as an arqument to a public method.
is exposed as a public member.
Noncompliant Code Example
public class Employees {
|_Iprivate HashSet<Employee> emplo?(ees = new
ashSet<Employee>();); Noncompliant - "employees” should
have type "Set" rather than "HashSet"
I\FUb“C HashSet<Employee> getEmployees() { //
oncompliant
return employees;
}
Compliant Solution
public class Employees {
rivate Set<Employee> employees = new HashSet<Employee>();
//pCompIiant
public Set<Employee> getEmployees() { //
Compliant
} return employees;
}
A4FTR BT
TaskList.java 332
DataUtils.java 40, 83, 200
R Exported component access should be restricted with appropriate

permissions

19

sonar

xiaomil Sonar Report

FIEES oS

Once an Android component has been exported, it can be used
by attackers to launch malicious actions and might also give
access to other components

that are not exported.

As a result, sensitive user data can be stolen, and components can
be launched unexpectedly.

For this reason, the following components should be protected:

Providers
Activities
Activity-aliases
Services

To do so, it is recommended to either set exported to false, add

android:readPermission and

android:writePermission attributes, or add a <permission> ta]?.
Warning : When targeting Android versions lower than 12,

the presence of intent filters will cause exported to be

set to true by default.

Irl“a component must be exported, use a <permission> tag and

the a

href="https://developer.android.com/guide/topics/manifest/permi

ssion-element#plevel">protection level that matches your use

case and data

confidentiality requirements. For example, Sync adapters should

use a

signature protection level to remain both exported and

protected.

Noncompliant Code Example

The following components are vulnerable because permissions

are undefined or partially defined:

<provider
android:authorities="com.example.app.Provider"
android:name="com.example.app.Provider"
android:exported="true"
android:readPermission="com.example.app.READ_PERMISSION"
/> <!-- Noncompliant: write permission is not defined -->

<provider
android:authorities="com.example.app.Provider”
android:name="com.example.app.Provider"
android:exported="true"

android:writePermission="com.example.app.WRITE_PERMISSION"
/> <!-- Noncompliant: read permission is not defined -->

<activity android:name="com.example.activity.Activity"> <!--
Noncompliant: permissions are not defined -->
<intent-filter>
<action android:name="com.example.OPEN_UI"/>
<'categor.Y android:name="android.intent.category. DEFAULT"/>
</intent-filter>
</activity >

Compliant Solution o .

If the component’s capabilities or data are not intended to be

sfh?red with other apps, its exported attribute should be set to
alse :

sonar

xiaomil Sonar Report

<provider
android:authorities="com.example.app.Provider"
android:name="com.example.app.Provider"
android:exported="false" /E

Otherwise, implement permissions:

<provider
android:authorities="com.example.app.Provider"
android:name="com.example.app.Provider"
android:exported="true"
android:readPermission="com.example.app.READ_PERMISSION"

7nd roid:writePermission="com.example.app.WRITE_PERMISSION"
>

<activity android:name="com.example.activity.Activity"
android:permission="com.example.app.PERMISSION" >
<intent-filter>
<action android:name="com.example.OPEN_UI"/>
<categorY android:name="android.intent.category. DEFAULT" />
</intent-filter>
</activity >

See

developer.android.com - Implementing
content provider permissions
Mobile ApI?Sec erification
Standard - Platform Interaction Requirements
OWASP Mobile Top 10 2016 Category M1 - Improper
platform usage
OWASP Mobile Top 10 2016 Category M2 - Insecure
Data Stora%
MITRE, CWE-926 - Improper Export of Android Application
Components

AR FR ST
AndroidManifest.xml 55, 55, 55, 53

|¥)|'|me |Instance methods should not write to "static" fields

21

sonar

xiaomil Sonar Report

FNFEIA Correctly updating a static field from a non-static method is
tricry tlo get right and could easily lead to bugs if there are
multiple
class l|Onstances and/or multiple threads in play. Ideally, static
fields are only updated from synchronized static
methods.

This rule raises an issue each time a static field is updated from a
non-static method.
Noncompliant Code Example
public class MyClass {
private static int count = 0;
public void doSomething() {
}co"fmt+ +; // Noncompliant
}
AHFTR BT
GTaskSyncService.java 47,49, 67, 101

|¥)|'|me |Nu|| pointers should not be dereferenced

22

sonar

xiaomil Sonar Report

FIEES oS

A reference to null should never be dereferenced/accessed.
Doing so will cause a NullPointerException to be thrown. At
best, such an exception will cause abrupt program termination. At
worst, it could expose debugging information that would be useful
to an attacker, or

it could allow an attacker to bypass security measures.

Note that when they are present, this rule takes advantage of
@CheckForNull and @Nonnull annotations defined in a
href="https://jcp.org/en/jsr/detail?id=305">JSR-305 to
understand which values are and are not nullable except when
@Nonnull is used

on the parameter to equals, which by contract should always
work with null.

Noncompliant Code Example

@CheckForNull
String getName(){...}

public boolean isNameEmpty() {
return getName().Iength(?== 0; // Noncompliant; the result of
getName() could be null, but isn't null-checked

Connection conn = null;

Statement stmt = null;

try{
conn = DriverManager.getConnection(DB_URL,USER,PASS);
;}mt = conn.createStatement();

}catch(Exception e){

e.printStackTrace();
Hinally{

stmt.close(); // Noncompliant; stmt could be null if an exception
was thrown in the try{} block

conn.close(); // Noncompliant; conn could be null if an exception
was thrown

}

private void merge(@Nonnull Color firstColor, @Nonnull Color
secondColor){...}

public void append(@CheckForNull Color color) {

merge(currentColor, color); // Noncompliant; color should be
null-checked because merge(...) doesn't accept nullable
Farameters

void paint(Color color) {
if(color == null) {
System.out.printIn("Unable to apply color " + color.toString());
// Noncompliant; NullPointerException will be thrown
return;

}
=

See

23

sonar

xiaomil Sonar Report

MITRE, CWE-476 - NULL Pointer Dereference

CERT, EXP34-C. - Do not dereference null pointers

CERT, EXP0O1-J. - Do not use a null in a case where an object is
required

XHER ERAT
Task.java 185
TaskList.java 138
GTaskManager.java 334, 471
FL |"switch" statements should have at least 3 "case" clauses
FANFEIA switch statements are useful when there are many different
cases depending on the value of the same expression.
For just one or two cases however, the code will be more readable
with if statements.
Noncompliant Code Example
switch (variable) {
case 0: _
doSomething();
break;
default:
doSomethingElse();
break;
}
Compliant Solution
if (variable == 0) {
doSomething();
} else { _
} doSomethingElse();
SCHEERR FEAIAT
AlarmAlertActivity.java 134
NoteEditText.java 104
NotesListActivity.java 561
NotesPreferenceActivity.java 378

|%)|'|me |"entrySet()" should be iterated when both the key and value are needed

24

sonar

xiaomil Sonar Report

FNFEIA When only the keys from a map are needed in a loop, iterating
the kenget makes sense. But when both the key and the value are
needed,
it's more efficient to iterate the entrySet, which will give access to
both the key and value, instead.

Noncompliant Code Example
public void doSomethingWithMap(Map <String,Object> map) {
for (String key : maclo.keySet()) { // Noncompliant; for each key
the value is retrieve
Object value = map.get(key);
/] ...
}
}
Compliant Solution
public void doSomethingWithMap(Map <String,Object> map) {
for (Map.Entry<String,Object> entry : map.entrySet()) {
String key = entry.getKe(/();
/O/bject value = entry.getValue();
-
}

MAEEFR BT

NoteEditActivity.java 280

NoteEditText.java 194

NotesListAdapter.java 94,110

|%)|'|.,mu |Constants should not be defined in interfaces

25

sonar xiaomil Sonar Report

A According to Joshua Bloch, author of "Effective Java™

The constant interface pattern is a poor use of interfaces.

4 Thz_alt a class uses some constants internally is an implementation
etall.

Implementing a constant interface causes this implementation
detall to leak into the class’s exported APL It is of no consequence
to the users

of a class that the class implements a constant interface. In fact, it
]Enay even confuse them. Worse, it represents a commitment: if in a

uture

release the class is modified so that it no longer needs to use the
constants, it still must implement the interface to ensure binary
compatibility.

If a nonfinal class implements a constant interface,

all of its subclasses will have their namespaces polluted by the

constants in the interface.

This rule raises an issue when an interface consists solely of fields,
without any other members.
Noncompliant Code Example

interface Status { // Noncompliant
int OPEN = 1;
} int CLOSED = 2;

Compliant Solution

public enum Status { // Compliant
OPEN,
CLOSED;

}

or

public final class Status { // Compliant

public static final int OPEN = 1;
public static final int CLOSED = 2;

}
AR FR AT
Notes.java 64, 170
NotesDatabaseHelper.java 35

|f)|'d,mu |Jump statements should not be redundant

26

sonar

xiaomil Sonar Report

AR A

MHERR

Jump statements such as return and continue let you change
the default flow of program execution, but jump statements
that direct the control flow to the original cfirection are just a
waste of keystrokes.

Noncompliant Code Example

public void foo() {
while (conditionl) {
if (condition2) {
continue; // Noncompliant
} else {
} doTheThing();

}
return; // Noncompliant; this is a void method

Compliant Solution

public void foo() {
while (conditionl) {
if (lcondition2) {
doTheThing();

EAUT

NotesListActivity.java 177, 181, 201

|f)ﬂbmu |Avoid using boxed "Boolean" types directly in boolean expressions

27

sonar xiaomil Sonar Report

A When boxed type java.lang.Boolean is used as an expression to

determine the control flow %as described in a

href="https://docs.oracle.com/javase/specs/jls/se8/html/jls-

#.html#j(ljs—4.2.5">Java Language Specification §4.2.5 The boolean
pe an

b)éolean Values) it will throw a NullPointerException if the value

is null (as defined in a

href="https://docs.oracle.com/javase/specs/jls/se8/html/jls-

5.html#jls-5.1.8">Java Language Specification §5.1.8 Unboxing

Conversion).

It is safer to avoid such conversion altogether and handle the null

value explicitly.

Note, however, that no issues will be raised for Booleans that have

already been null-checked.

Noncompliant Code Example

Boolean b = getBoolean();

if (b) { // Noncompliant, it will throw NPE when b == null
foo();

} else {

\ bar();

Compliant Solution

Boolean b = getBoolean();
if (Boolean.TRUE.equals(b)) {
foo();
} else {
} bar(); // will be invoked for both b == false and b == null

Boolean b = getBoolean();
if(b I= null){

}String test=b? "test": "";
See

Java Language Specification §5.1.8 Unboxing Conversion

MIHBER ST
NotesListAdapter.java 95, 111, 139

ALY Pri_/a‘gla fields only used as local variables in methods should become local
variables

28

sonar

xiaomil

Sonar Report

AR A

When the value of a private field is always assigned to in a class’
methods before being read, then it is not being used to store class
information. Therefore, it should become a local variable in the
relevant methods to prevent any misunderstanding.

Noncompliant Code Example

public class Foo {
private Int a;
private int b;

public void doSomething(int y) {
a=y+5

if(@a == 0) {
-

=

public void doSomethingElse(int y) {
b=y+3;

=
}

Compliant Solution
public class Foo {

public void doSomething(int y) {
inta=y+5;

if(@a == 0) {

}
}

public void doSomethingElse(int y) {
intb=y+3;

}
}

Exceptions) _ _

This rule doesn't raise any issue on annotated field.
AR FR EHT
NoteEditActivity.java 150
NotesListActivity.java 237

|%)|'|.,mu |Static non-final field names should comply with a naming convention

sonar

xiaomil Sonar Report

FNFEIA Shared naming conventions allow teams to collaborate efficiently.
This rule checks that static non-final field names match a provided
regular
expression.

Noncompliant Code Example
With the default regular expression *[a-z][a-zA-Z0-9]*$:
public final class MyClass {
private static String foo_bar;
Compliant Solution
class MyClass {
private static String fooBar;

SCHEERR FEAIAT

NotesProvider.java 76

GTaskASyncTask.java 34

A |All branches in a conditional structure should not have exactly the same
implementation

30

sonar

xiaomil Sonar Report

AR A

MR

Having all branches in a switch or if chain with the same
implementation is an error. Either a copy-paste error was made
and something different should be executed, or there shouldn't be
a switch / if chain at all.

Noncompliant Code Example

if (b == 0) { // Noncompliant
doOneMoreThing();

} else {

\ doOneMoreThing();

intb=a>127?4:4; // Noncompliant

switch (i) { // Noncompliant

case 1:
doSomething();
break;

case 2:
doSomething();
break;

case 3:
doSomething();
break;

default:
doSomething();

}

Exceptions

This rule does not apply to if chains without else -s, or to switch
-es without default

clauses.

if(lbo == 0){ //no issue, this could have been done on purpose to
make the code more readable
doSomethin%();
}else if(b == 1) {
} doSomething();

BT

TaskList.java

203

DateTimePickerDialog.java 80

|¥)|'|me |Class names should comply with a naming convention

31

sonar xiaomil

Sonar Report

regular
expression,

class my_class {...}
Compliant Solution

class MyClass {...}

AR A Shared coding conventions allow teams to collaborate effectively.
This rule allows to check that all class names match a provided

Noncompliant Code Example
With default provided regular expression A[A-Z][a-zA-Z0-9]*$:

MIHBER ST
NoteWidgetProvider 2x.java 27
NoteWidgetProvider 4x.java 27

|f)ﬂbmu |Try—with—resources should be used

32

sonar

xiaomil Sonar Report

FIEES oS

MHEFR

Java 7 introduced the try-with-resources statement, which
guarantees that the resource in question will be closed. Since the
new syntax is closer
to bullet-proof, it should be preferred over the older try / catch /
finally version.

This rule checks that close -able resources are opened in a try-
with-resources statement.

Note that this rule is automatically disabled when the project’s
sonar.java.source is lower than 7.

Noncompliant Code Example

FileReader fr = null;
BufferedReader br = null;

try {
% = new FileReader(fileName);
br = new BufferedReader(fr);
return br.readLine();

} catch (...) {

} finally {
if (br!= null) {

trE\)/ {
r.close();
} catch(IOException e){...}

i}f (fr '= null) {

tr[\)/ {
r.close();
} } catch(IOException e){...}

}
Compliant Solution
try (

yFiIeReader fr = new FileReader(fileName);
BufferedReader br = new BufferedReader(fr)

} return br.readLine();
catch (...) {}
or
try (BufferedReader br = _ _
new BufferedReader(new FileReader(fileName))) { // no need

to name intermediate resources if you don't want to
} return br.readLine();
catch (...) {}
See

CERT, ERR54-J. - Use a try-with-resources statement to safely

handle closeable
resources

EAUT

GTaskClient.java 309

NotesListActivity.java 165

33

sonar

xiaomil

Sonar Report

|¥W,J|'JU |Resources should be closed

34

sonar

xiaomil Sonar Report

FIEES oS

Connections, streams, files, and other classes that implement the
Closeable interface or its super-interface,

AutoCloseable , needs to be closed after use. Further, that close
call must be made in a finally block otherwise

an exception could keep the call from being made. Preferably,
when class implements AutoCloseable, resource should be
created using

"try-with-resources" pattern and will be closed automatically.
Failure to properly close resources will result in a resource leak
which could bring first the application and then perhaps the box
the application

is on to their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {

Path path = Paths.get(this.fileName);

BufferedReader reader = Files.newBufferedReader(path,
this.charset);

/ ..
reader.close(); // Noncompliant

Filéé.lines(“input.txt“).forEach(System.out::println); //
Noncompliant: The stream needs to be closed

private void doSomething() {
OutputStream stream = null;

try {
?é)r (String property : propertyList) {
;}ream = new FileOutputStream("myfile.txt"); // Noncompliant

}}catch (Exception e) {

} finally {
| strgam.close(); // Multiple streams were opened. Only the last is
closed.

}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
Path path = Paths.get(fileName);
try (BufferedReader reader = Files.newBufferedReader(path,
StandardCharsets.UTF_8)) {
reader.readLine();
}//

/] ..
try (Stream<String> input = Files.lines("input.txt")) {
input.forEach(System.out::printin);

}

private void doSomething() {
Out{putStream stream = null;
tr
sxcream = new FileOutputStream("myfile.txt");
fc;; (String property : propertyList) {

35

sonar

xiaomil Sonar Report

} }catch (Exception e) {

} finally {
stream.close();

}

Exceptions _ _)
Instances of the following classes are ignored by this rule because
close has no effect:

Java.io.ByteArrayOutputStream
Java.io.ByteArraylnputStream
Java.io.CharArrayReader
Java.io.CharArrayWriter
Java.io.StringReader
Java.io.StringWriter

Java 7 introduced the try-with-resources statement, which
implicitly closes Closeables . All resources opened in a try-with-
resources

statement are ignored by this rule.

trY (BufferedReader br = new BufferedReader(new
Fi//eReader(fiIeName))) {

Latch (.){
\ //...

See

MITRE, CWE-459 - Incomplete Cleanup
it MITRE, CWE-772 - Missing Release of Resource after Effective
Ifetime
CERT, FIO04-J). - Release resources when they are no longer
needed
CERT, FIO42-C. - Close files when they are no longer needed
Try With Resources

AR FR BT
GTaskClient.java 311
BackupUtils.java 299

|¥)|'|me |Methods returns should not be invariant

sonar

xiaomil Sonar Report

RINFEA When a method is desi?ned to return an invariant value, it may be
poor design, but it shouldn’t adversely affect the outcome of your
E'rogram. . o
owever, when it happens on all paths through the logic, it is
surely a bug.
This rule raises an issue when a method contains several return
statements that all return the same value.
Noncompliant Code Example
int foo(int a) {
intb=12;
if (@a==1){
return b;
}
return b; // Noncompliant
SCHEERR AT
NoteEditActivity.java 484
|%)|'|me |"@Deprecated" code marked for removal should never be used

37

sonar

xiaomil Sonar Report

FIEES oS

Java 9 introduced a flag for the @Deprecated annotation, which
allows to explicitly say if the deprecated code is planned to be
removed at some point or not. This is done usin

forRemoval=true as annotation parameter. The javadoc of the
annotation explicitly

mention the following:

If true, it means that this API element is earmarked for removal
in a future release.

If false, the API element is deprecated, but there is currently no
intention to remove it in a future release.

While usually deprecated classes, interfaces, and their deprecated
members should be avoided rather than used, inherited or
extended, those already

marked for removal are much more sensitive to causing trouble in
your code soon. Consequently, any usage of such deprecated code
should be avoided or

removed.

Noncompliant Code Example

**

* @deprecated As of release 1.3, replaced by {@link #Fee}. Will be
clropped with release 1.4.

@Deprecated(forRemoval=true)
public class Foo { ... }

public class Bar {
**k

* @de_Precated As of release 1.7, replaced by {@link
#q7The hingBetter()}

@Deprecated(forRemoval=true)
public void doTheThing() { ... }

public void doTheThingBetter() { ... }

**

: @deprecated As of release 1.14 due to poor performances.

@Deprecated(forRemoval=false)
public void doTheOtherThing() { ... }

}

public class Qix extends Bar {

@Override

public void doTheThingL() {..}// Noncompliant; don't override a
deprecated method marked for removal

}

public class Bar extends Foo { // Noncompliant; Foo is deprecated
and will be removed

public void myMethod() {
Bar bar = new Bar(); // okay; the class isn't deprecated
bar.doTheThing(); // Noncompliant; doTheThing method is
deprecated and will be removed

bar.doTheOtherThing(); // Okay; deprecated, but not marked for
removal

38

sonar

xiaomil

Sonar

Repor t

}
}

See

methods

MITRE, CWE-477 - Use of Obsolete Functions
CERT, METO02-J. - Do not use deprecated or obsolete classes or

RSPEC-1874 for standard deprecation use

X{HEFR ERAT
GTaskManager.java 610

|¥)”me |Unused method parameters should be removed

39

sonar

xiaomil Sonar Report

FIEES oS

Unused parameters are misleading. Whatever the values passed
to such parameters, the behavior will be the same.
Noncompliant Code Example

void doSomething(int a, intb) { // "b" is unused
compute(a);

Compliant Solution

void doSomething(int a) {
compute(a);

Exceptions o
The rule will not raise issues for unused parameters:

that are annotated with @javax.enterprise.event.Observes
in overrides and implementation methods
in interface default methods
) icrlm_ non-private methods that only throw or that have empty
odies
in annotated methods, unless the annotation is
@SuppressWarning("unchecked") or
@Supﬁ)ressWarning("rawtypes") ,in
which case the annotation will be ignored
in overridable methods (non-final, or not member of a final
class, non-static, non-private), if the parameter is documented
with a proper
javadoc.

@Override
void doSomething(int a, int b) { // no issue reported on b
compute(a);

public void foo(String s) {
// designed to be extended but noop in standard case

protected void bar(String s) {
//open-closed principle

public void qix(String s) {
throw new UnsupportedOperationException("This method should
be implemented in subclasses”);

**

* @param s This string may be use for further computation in
overriding classes
*

protected void foobar(int a, String s) { // no issue, method is

overridable and unused parameter has proper javadoc
compute(a);

See

40

sonar

xiaomil Sonar Report

CERT, MSC12-C. - Detect and remove code that has no effect
or is never executed

X{HEFR ERAT
GTaskManager.java 622

40 |Field names should comply with a naming convention
FRNFIA Sharing some naming conventions is a key point to make it
possible for a team to efficiently collaborate. This rule allows to
check that field . .
names match a provided regular expression.
Noncompliant Code Example
With the default regular expression *[a-z][a-zA-Z0-9]*$:
class MyClass {
private int my_field;
Compliant Solution
class MyClass {
} private int myField;
SRR AT
BackupUitils.java 119

|%)|'|me |Empty arrays and collections should be returned instead of null

41

sonar

xiaomil Sonar Report

FIEES oS

Returnin? null instead of an actual array, collection or map
f(ﬁrces callers of the method to explicitly test for nullity, making
them
more complex and less readable.

Moreover, in many cases, null is used as a synonym for empty.

Noncompliant Code Example

public static List<Result> getAllResults() {
return null; // Noncompliant

public static Result[] getResults() {

} return null; // Noncompliant
public static Map <String, Object> getValues() {
} return null; // Noncompliant

public static void main(String[] args) {
Result[] results = getResults(); .)
nI‘DI(EresuIts I= null) ? // Nullity test required to prevent

for (Result result: results) {

/* .
}
}
List<Result> allResults = getAllResults();
I\lhl;I(Ea”ReSUHS I= null) { // Nullity test required to prevent
for (Result result: allResults) {
/¥
}
}
Map <String, Object> values = getValues();
i;l(zvalues I= nullg { // Nullity test required to prevent

values.forEach((k, v) -> doSomething(k, v));
}

Compliant Solution

public static List<Result> EetAIIResuIts() {

} return Collections.emptyList(); // Compliant

public static Result[] getResults() {)
return new Result[O% // Compliant

public static Map <String, Object> getValues() {
return Collections.emptyMap(); // Compliant

public static void main(String([] args) {
f(}i (RE;UIt result: getAIIResuIts()?{
}

42

sonar

xiaomil Sonar Report

f% (joult result: getResults()) {
e

} getValues().forEach((k, v) -> doSomething(k, v));

See

CERT, MSC19-C. - For functions that return an array, prefer
returning an empty array
over a null value
CERT, MET55-J. - Return an empty array or collection instead
of a null value for
methods that return an array or collection

SCHEHR AT
NotesListAdapter.java 124

F |Method names should comply with a naming convention
MR Shared naming conventions allow teams to collaborate efficiently.
This rule checks that all method names match a provided regular
expression.
Noncompliant Code Example
With default provided regular expression *[a-z][a-zA-Z0-9]*$:
public int DoSomething(){...}
Compliant Solution
public int doSomething(){...}
Exceptions
Overriding methods are excluded.
@Override
public int Do_Something(){...}
MAEEFR ERAT
DateTimePickerDialog.java 40

|fmlﬂu |Constructors of an "abstract" class should not be declared "public"

sonar

xiaomil Sonar Report

HUNFEA Abstract classes should not have public constructors. Constructors
of abstract classes can only be called in constructors of their
subclasses. So
there is no point in making them public. The protected modifier
should be enough.

Noncompliant Code Example
public abstract class AbstractClass1 {
public AbstractClass1 () { // Noncompliant, has public modifier
} // do something here
}
Compliant Solution
public abstract class AbstractClass2 {
protected AbstractClass2 () {
\ // do something here
}
XIHBEFR BT
Node.java 50

|f)ﬂbmu |Methods should not have identical implementations

44

sonar

xiaomil Sonar Report

AR A

than 2 statements are ignored.

When two methods have the same implementation, either it was a
mistake - something else was intended - or the duplication was
intentional, but may

be confusing to maintainers. In the latter case, one
implementation should invoke the other. Numerical and string
literals are not taken into

account.

Noncompliant Code Example

private final static String CODE = "bounteous”;

public String calculateCode() {
doTheThing();
return CODE;

}

public String getName() { // Noncompliant
doTheThingg;
} return CODE;

Compliant Solution
private final static String CODE = "bounteous”;

public String getCode() {
doTheThingg;
return CODE;

}

ublic String getName() {
preturn getgogde();

Exceptions)
Methods that are not accessors (getters and setters), with fewer

MIHBER ST
NoteltemData.java 193

#IM [Nested blocks of code should not be left empty

AR fIA

they can still affect program flow.
AR FR AT

Most of the time a block of code is empty when a piece of code is
really missing. So such empty block must be either filled or
removed.

Noncompliant Code Example

for (inti =0;i <42;i++){} // Empty on purpose or missing piece
of code ?

Exceptions

When a block contains a comment, this block is not considered to
be empty unless itis a synchronized block. synchronized

blocks are still considered empty even with comments because

45

sonar

xiaomil Sonar Report

| NotesListActivity.java |479

L |Co||ection.isEmpty() should be used to test for emptiness
FNFEIA Using Collection.size() to test for emptiness works, but using
Collection.isEmpty() makes the code more readable and can
be more performant. The time complexity of any isEmpty()
method implementation should be O(1) whereas some
implementations
of size() can be O(n).
Noncompliant Code Example
if/&mygf)llection.size() == 0){ // Noncompliant
o
Compliant Solution
if (myCollection.isEmpty()) {
/* .
}
B FR EHT
DataUtils.java 45

#0) [String.valueOf() should not be appended to a String
FNHEA Appending String.valueOf() to a String decreases the code
readability.
The argument passed to String.valueOf() should be directly
appended instead.
Noncompliant Code Example
public void display(int i){
System.out.printin("Output is " + String.valueOf(i)); //
;\loncompliant
Compliant Solution
public void display(int i){
\ System.out.printin("Output is " + i); // Compliant
A4FTR BT
NotesProvider.java 286

|¥)|'|me |Redundant casts should not be used

sonar

xiaomil Sonar Report

FNFEIA Unnecessary casting expressions make the code harder to read
and understand.
Noncompliant Code Example
public void example() {
for (Foo obj : (List<Foo>) getFoos()) { // Noncompliant; cast
un?/ecessary because List<Foo> is what's returned
}
}
public List<Foo> getFoos() {
} return this.foos;
Compliant Solution
public void example() {
for (Foo obj : getFoos()) {
/...
}
}
public List<Foo> getFoos() {
} return this.foos;
Exceptions
Casting may be required to distinguish the method to call in the
case of overloading:
class A {}
class B extends A{}
class C {
void fun(A a){}
void fun(B b){}
void foo() {
B b = new B();
fun(b);
fun((A) b); //call the first method so cast is not redundant.
}
B FR EAT
GTaskManager.java 681

|¥)ﬂbwu |Parsinq should be used to convert "Strings" to primitives

47

sonar

xiaomil Sonar Report

FNFEIA Rather than creating a boxed primitive from a String to extract
the primitive value, use the relevant parse method
instead. It will be clearer and more efficient.
Noncompliant Code Example
String myNum = "12.2";
float f = (new Float(myNum)).floatValue(); // Noncompliant;
creates & discards a Float
Compliant Solution
String myNum = "12.2";
float f = Float.parseFloat(myNum);
N4ETR BT
NotesProvider.java 201

ARy Return values should not be ignored when they contain the operation
status code

48

sonar

xiaomil Sonar Report

FIEES oS

MAEERR

When the return value of a function call contains the operation
status code, this value should be tested to make sure the
operation completed

successfully.

This rule raises an issue when the return values of the following

are ignored:
java.io.File operations that return a status code (except mkdirs

Iterator.hasNext()
Enumeration.hasMoreElements()
Lock.tryLock()

non-void Condition.await* methods
CountDownlatch.await(long, TimeUnit)
Semaphore.tryAcquire
BlockingQueue : offer, remove

Noncompliant Code Example

public void doSomething(File file, Lock lock) {
file.delete(); // Noncompliant

// ...
} lock.tryLock(); // Noncompliant

Compliant Solution

public void doSomething(File file, Lock lock) {
if (Mlock.tryLock()) {
// lock failed; take appropriate action

}
if (file.delete()) {
// file delete tailed; take appropriate action

}
See

CERT, EXP0O0O-J. - Do not ignore values returned by methods

CERT, FIO02-). - Detect and handle file-related errors

MITRE, CWE-754 - Improper Check for Unusual Exceptional
Conditions

EAUT

BackupUtils.java 331

|f)|'d,mu |Math operands should be cast before assignment

49

sonar

xiaomil Sonar Report

FIEES oS

When arithmetic is performed on integers, the result will always
be an integer. You can assign that result to a long,
double, or float with automatic type conversion, but having
started as an int or long, the result
will likely not be what you expect.

For instance, if the result of int division is assigned to a floating-
point variable, precision will have been lost before the
assignment. Likewise, if the result of multiplication is assigned to a
long , it may have already overflowed before the assignment.

In either case, the result' will not be what was expected. Instead, at
least one operand should be cast or promoted to the final type
before the
operation takes place.

Noncompliant Code Example

float twoThirds = 2/3; // Noncompliant; int division. Yields 0.0

long millisinYear = 1_000*3_600*24*365; // Noncompliant; int
multiplication. Yields 1471228928

long bigNum = Integer.MAX_VALUE + 2; // Noncompliant. Yields -
2147483647

long bigNegNum = Integer.MIN_VALUE-1; //Noncompliant, gives
a positive result instead of a negative one.

Date myDate = new Date(seconds * 1_000); //Noncompliant, won't
produce the expected result if seconds > 2_147_483

Eublic long comfute(int factor){)
return factor * 10_000; //Noncompliant, won't produce the
expected result if factor > 214_748

}

public float compute2(long factor){
return factor / 123; //Noncompliant, will be rounded to closest
long integer

Compliant Solution

float twoThirds = 2f/3; // 2 promoted to float. Yields 0.6666667
long millisinYear = 1_000L*3_600*24*365; // 1000 promoted to
long. Yields 31_536_000_000

Ionlg bingum = Inte%er.MAX_VALUE + 2L; // 2 promoted to long.
Yields 2 147 483 64

long bigNegNum = Integer.MIN_VALUE-1L; // Yields -

2 147 483 649

Date myDate = new Date(seconds * 1_000L);

ic.).ublic long compute(int factor){
return factor * 10_000L;

public float compute2(long factor){
return factor / 123f;

or

float twoThirds = (float)2/3; // 2 cast to float

Iong millisinYear = (long)1_000*3_600*24*365; // 1_000 cast to
on

Iong bigNum = (long)Integer. MAX_VALUE + 2;

long bigNegNum = (Iong?lnteger.MIN_VALUE-1;

50

sonar

xiaomil Sonar Report

Date myDate = new Date((long)seconds * 1_000);

Eublic long compute(long factor){
return factor * 10_000;

public float compute2(float factor){
return factor / 123;

See

MITRE, CWE-190 - Integer Overflow or Wraparound
CERT, NUM50-J. - Convert integers to floating point for
floating-point operations

CERT, INT18-C. - Evaluate integer expressions in a larger size
before comparing or
assigning to that size
SANS Top 25 - Risky Resource Management

A& FR EHT
GTaskClient.java 115

MR [Methods of "Random"” that return floating point values should not be used
in random integer generation
FNFEIA There is no need to multiply the output of Random 's
nextDouble method todget a random integer. Use the
nextint method instead.
This rule raises an issue when the return value of any of Random
's methods that return a floating point value is converted to an
integer.
Noncompliant Code Example
Random r = new Random(); .
int rand = (int)r.nextDouble() * 50; // Noncompliant way to get a
pseudo-random value between 0 and 50 .
int rand2 = (int)r.nextFloat(); // Noncompliant; will always be 0;
Compliant Solution
Random r = new Random();
int rand = r.nextInt(50); // returns pseudo-random value between
0 and 50
M4BER BT
ResourceParser.java 71

|fmmu |Mu|tiple variables should not be declared on the same line

sonar

xiaomil Sonar Report

AR

MHEFR

Declaring multiple variables on one line is difficult to read.
Noncompliant Code Example

class MyClass {
private int a, b;

public void method(){
int ¢; int d;
}
}
Compliant Solution

class MyClass {

private int a;
private int b;

public void method(){
Int ¢;
int d;
}
}

See

CERT, DCL52-J). - Do not declare more than one variable per
declaration

CERT, DCLO4-C. - Do not declare more than one variable per
declaration

EAUT

NotesProvider.java 153

FLm |Sections of code should not be commented out

AL

Programmers should not comment out code as it bloats programs
and reduces readability.

Unused code should be deleted and can be retrieved from source
control history if required.

MG BER ST
GTaskASyncTask.java 5

|¥)|'|me |Boo|ean expressions should not be gratuitous

sonar

xiaomil Sonar Report

FNFEIA If a boolean expression doesn’t change the evaluation of the
condition, then it is entirely unnecessary, and can be removed. If it
is gratuitous
because it does not match the pr%grammer's intent, then it's a bug
and the exFression should be fixed.

Noncompliant Code Example

a = true;

if (a) { // Noncompliant

} doSomething();

if (b && a) { // Noncompliant; "a" is always "true"

} doSomething();

if (cy la) { // Noncompliant; "la" is always "false"

} doSomething();

Compliant Solution

a = true;

if (foo(a)) {

} doSomething();

if (b) {

} doSomething();

if (c) {

} doSomething();

See
MITRE, CWE-571 - Expression is Always True
MITRE, CWE-570 - Expression is Always False

XHRFR BT
GTaskManager.java 135
14. REERE
=1 =1 java:Sonar way Bug:139 RiE:31 IRBKiE:272

AR it BRI F

Methods should not call same-class methods Bug BT

with incompatible "@Transactional” values

Methods "wait(...)", "noti{y()" and "notifyAll()" Bug =]

should not be called on Thread instances

Files opened in append mode should not be used |Bug BELT

with ObjectOutputStream

"PreparedStatement” and "ResultSet" methods |Bug BT

should be called with valid indices

53

Members igbnored during record serialization

should not be used

sonar xiaomil Sonar Report
"wait(...)" should be used instead of Bug =]
"Thread.sleep(...)" when a lock is held
Printf-style format strings should not lead to Bug BRI
unexpected behavior at runtime
"@SpringBootApplication" and _ Bug BT
"@ComponentScan” should not be used in the
default package
"@Controller" classes that use Bug BELT
"@SessionAttributes” must call "setComplete” on
their "SessionStatus” objects
Loops should not be infinite Bug BELAT
"wait" should not be called when multiple locks |Bug BELAfT
are held
Double-checked locking should not be used Bug BELET
Resources should be closed Bug R
Locks should be released on all paths Bug =
Reqular expressions should be syntactically valid |Bug FEE
i)lfm statements should not occur in "finally" Bug ="
ocks

"Random” objects should be reused Bug =1
"super.finalize()" should be called at the end of |Bug b=
"Object.finalize()" implementations
Assertions comparing incompatible types should [Bug ="
not be made
The signature of "finalize()" should match that of |Bug fa="1
"Object.finalize()"
Assertion methods should not be used within the |Bug b=
try block of a try-catch catching an Error
Only one method invocation is expected when Bug ="
testing checked exceptions
"runFinalizersOnExit" should not be called Bug FEE
Regex boundaries should not be used in away |Bug ="
that can never be matched
"ScheduledThreadPoolExecutor” should not have |Bug f=c1
0 core threads
Regex patterns following a possessive quantifier |Bug fa="1
should not always fail
Zero should not be a possible denominator Bug =
Back references in regular expressions should Bug fa="1
on{y refer to capturing groups that are matched
before the reference
Regex lookahead assertions should not be Bug f=-1
contradictory
JUnit5 inner test classes should be annotated Bug ="
with @Nested
Map "com?uteIfAbsent()" and Bug f=c1
"computelfPresent()" should not be used to add
"null" values.

Bug f=-1

54

sonar xiaomil Sonar Report
]geltdters and setters should access the expected Bug =21
ields
"toString()" and "clone()" methods should not Bug FE
return null
Servlets should not have mutable instance fields [Bug FE
Value-based classes should not be used for Bug FE
locking
Alternatives in regular expressions should be Bug FE
grouped when used with anchors
Regex alternatives should not be redundant Bug FE
Reflection should not be used to check non- Bug FE
runtime annotations
Conditionally executed code should be reachable |Bug FE
Overrides should match their parent class Bug FE
methods in synchronization
Collections should not be passed as arguments to |Bug FE
their own methods
"hashCode" and "toString" should not be called |Bug FE
on array instances
Case insensitive Unicode regular expressions Bug FE
should enable the "UNICODE _CASE" flag
Invalid "Date" values should not be used Bug FE
"BigDecimal(double)" should not be used Bug FE
Non-public methods should not be Bug FE
"@Transactional"
Assertions should not compare an object to itself |Bug FE
Non-serializable classes should not be written Bug FE
]Iélc?éks should be synchronized on "private final" |Bug FE
ields
Optional value should only be accessed after Bug =
calling isPresent()
Assert) configuration should be applied Bug FE
Unicode Grapheme Clusters should be avoided |Bug FE
inside regex character classes
"notifyAll" should be used Bug FE
Return values from functions without side effects |Bug FE
should not be ignored
".equals()" should not be used to test the values |Bug FE=
of "Atomic" classes
Non-serializable objects should not be stored in |Bug FE
"HttpSession" objects
Assert) methods setting the assertion context Bug FE
should come before an assertion
The Object.finalize() method should not be called [Bug FE
Assertions should not be used in production code [Bug FE
InputSteam.read() implementation should not Bug FE
return a signed byte
Tests method should not be annotated with Bug FE
competing annotations
"InterruptedException” should not be ignored Bug FE

55

year and week numbers

sonar xiaomil Sonar Report
Silly equality checks should not be made Bug FE
Dissimilar primitive wrappers should not be used |Bug FE
with the ternary operator without explicit casting
"wait", "notify" and "notifyAll" should only be Bug FE
called when a lock is obviously held on an object
]'C'Double.longBitsToDoubIe" should not be used |Bug FE
or "int"
Silly String operations should not be made Bug FE
Values should not be uselessly incremented Bug FE
Regﬂlar expressions should not overflow the Bug FE
stac
Null pointers should not be dereferenced Bug FE
Expressions used in "assert” should not produce |Bug FE
side effects
Classes extending java.lang.Thread should Bug FE
override the "run" metho
Loop conditions should be true at least once Bug FE
A "for" loop update clause should move the Bug FE
counter in the right direction
Variables should not be self-assigned Bug FE
Intermediate Stream methods should not be left |Bug FE
unused
Consumed Stream pipelines should not be reused|Bug FE
Loops with at most one iteration should be Bug =
refactored
Classes should not be compared by name Bug FE
Ina%propriate regular expressions should not be |Bug FE
use
"=+" should not be used instead of "+=" Bug FE
Identical expressions should not be used on both |Bug T8
sides of a binary operator
JUnit5 test classes and methods should not be Bug FE
silently ignored
"Thread.run()" should not be called directly Bug FE
"readd" and "readLine" return values should be Bug FE
use
"null" should not be used with "Optional" Bug FE
Strings and Boxed types should be compared Bug FE
using "equals()"
Methods should not be named "tostring”, Bug FE
"hashcode" or "equal”
Non-thread-safe fields should not be static Bug FE
Getters and setters should be synchronized in Bug FE
pairs
"StringBuilder" and "StringBuffer" should not be [Bug FE
instantiated with a character
Unary prefix operators should not be repeated Bug FE
DateTimeFormatters should not use mismatched |Bug FE

56

sonar xiaomil Sonar Report
"equals" method overrides should accept Bug FE
"Object" parameters
Collection sizes and array length comparisons Bug FE
should make sense
Exceptions should not be created without being |Bug FE
thrown
Week Year ("YYYY") should not be used for date |Bug FE
formatting
"ThreadLocal" variables should be cleaned up Bug FE
when no longer used
Synchronization should not be done on instances |Bug FE
of value-based classes
Related "if/else if" statements should not have Bug FE
the same condition
All branches in a conditional structure should not |Bug FE
have exactly the same implementation
The regex escape sequence \cX should only be |Bug FE
used with characters in the @-_range
"Iterator.hasNext()" should not call Bug =
"Iterator.next()"
"String" calls should not go beyond their bounds |Bug FE
Raw byte values should not be used in bitwise Bug FE
operations in combination with shifts
"Externalizable" classes should have no- Bug FE=
arguments constructors
Custom serialization method signatures should |Bug FE
meet requirements
"iterator" should not return "this" Bug FE
Inagpropriate "Collection" calls should not be Bug FE
made
Child class methods named for parent class Bug FE
methods should be overrides
"volatile" variables should not be used with Bug =
compound operators
"compareTo" should not be overloaded Bug FE
Assert) assertions with "Consumer" arguments |Bug FE
should contain assertion inside consumers
Map values should not be replaced Bug =
unconditionally
Reflection should not be used to increase Bug FE
accessibility of records' fields
Equals method should be overridden in records |Bug T8
containing array fields
"getClass" should not be used for synchronization|Bug FE
Assi?nment of lazy-initialized members should be |Bug FE
the last step with double-checked locking
Min and max used in combination should not Bug FE
always return the same value
"compareTo" results should not be checked for |Bug RE
specific values

57

sonar xiaomil Sonar Report
Assert) assertions "allMatch" and Bug RE
"doesNotContains" should also test for emptiness
Repeated patterns in reqular expressions should |Bug RE
not match the empty string
Double Brace Initialization should not be used Bug RE
Boxing and unboxing should not be immediately |Bug RE
reversed
"Iterator.next()" methods should throw Bug IRE
"NoSuchElementException”
"@NonNull" values should not be set to null Bug KRB
The value returned from a stream read should be [Bug RE
checked
Neither "Math.abs" nor negation should be used |Bug RE
on numbers that could be "MIN_VALUE"
Method parameters, caught exceptions and Bug RE
foreach variables' initial values should not be
ignored
"equals(Object obj)" and "hashCode()" should be |Bug RE
overridden in pairs
"Serializable" inner classes of non-serializable Bug RE
classes should be "static"
Math operands should be cast before assignment |Bug KRB
Ints and longs should not be shifted by zero or |Bug RE
more than their number of bits-1
"compareTo" should not return Bug RE
"Integer.MIN_VALUE"
The non-serializable super class of a "Serializable" |Bug RE
class should have a no-argument constructor
"toArray" should be passed an array of the proper|Bug RE
type
Non-primitive fields should not be "volatile" Bug RE
"equals(Object obj)" should test argument type |Bug IRE
Return values should not be ignored when they |Bug RE
contain the operation status code
A secure password should be used when ppE BELT
connecting to a database
XML parsers should not be vulnerable to XXE TRiE RELRT
attacks
XML parsers should not allow inclusion of A BT
arbitrary files
Credentials should not be hard-coded IzilE FET
Cipher Block Chaining IVs should be e f=c1
unpredictable
Persistent entities should not be used as imiE B
arguments of "@RequestMapping" methods
Cipher algorithms should be robust IRilE =
JWT should be signed and verified with strong A =1
cipher algorithms
Encryption algorithms should be used with secure |i%iR f=-1
mode and padding scheme
Weak SSL/TLS protocols should not be used IRilE e

58

sonar xiaomil Sonar Report
A new session should be created during user il =1
authentication
Cryptographic keys should be robust IEiE FEE
"HttpServletRequest.getRequestedSessionld()" il =1
should not be used
LDAP connections should be authenticated =il =21
Server hostnames should be verified during il =1
SSL/TLS connections
"HttpSecurity" URL patterns should be correctly |i%iRE =1
ordered
Basic authentication should not be used TailE =1
Server certificates should be verified during i b=
SSL/TLS connections
Passwords should not be stored in plain-text or |i&@iE f=c1
with a fast hashing algorithm
Counter Mode initialization vectors should not be | fad=1
reused
"SecureRandom" seeds should not be predictable |JEiF e
Insecure temporary file creation methods should |/&ild fa="1
not be used
Hashes should include an unpredictable salt JEiE =1
Authorizations should be based on strong p=hEl FE
decisions
XML parsers should not load external schemas il FE
XML signatures should be validated securely JRiE FE
XML parsers should not be vulnerable to Denial |/%idA FE
of Service attacks
Mobile database encryption keys should not be |i%ifA FE
disclosed
OpenSAML2 should be configured to prevent il FE
authentication bypass
"ActiveMQConnectionFactory" should not be e RE
vulnerable to malicious code deserialization
Exceptions should not be thrown from servlet il RE
methods
Tests should include assertions INKIE R
]ghlicljd class fields should not shadow parent class |3REKE BELr
ields
Assertions should be complete N SE] BELF
"clone" should not be overridden N SE RELET
;'sgvi'fch" statements should not contain non-case [IAlKiE R
abels
Methods returns should not be invariant 7N SE RE T
Silly bit operations should not be performed /NS E] RE KT
Switch cases should end with an unconditional 7N SE] R BT
"break" statement
Methods and field names should not be the same |¥/ki& BELT
or differ only by capitalization
JUnit test cases should call super methods 7N SE] R
TestCases should contain tests N SE] BELT

59

sonar xiaomil Sonar Report
"ThreadGroup" should not be used 7N S E] RE b
Future keywords should not be used as names BN S E] REHT
Short-circuit logic should be used in boolean 7N SE] RELEAT
contexts
"default" clauses should be last 7N SE FEE
IllegalMonitorStateException should not be 7N SE] =1
caught
Whitespace and control characters in literals 7N SE] ="
should be explicit
Package declaration should match source file 717 ST fad=:1
directory
Cognitive Complexity of methods should not be [JABKiE ="
too high
The Object.finalize() method should not be INKE e
overridden
Null should not be returned from a "Boolean" 7N S =] =1
method
}nslgance methods should not write to "static" RkE =21
ields
String offset-based methods should be preferred |¥AEKE ="
for finding substrings from offsets
"indexOf" checks should not be for positive 7N SE] f=:1
numbers
Factory method injection should be used in 7N SE] =1
"@Configuration” classes
Emdo’?/ lines should not be tested with regex 7N SE] FEE
MULTILINE flag
Mocking all non-private methods of a class 7N SE] ="
should be avoided
"Object.finalize()" should remain protected NI S =] fcy="1
(versus public) when overriding
"Cloneables" should implement "clone" N SE] =1
Methods should not be empty 7N SE] =1
"Object.wait(...)" and "Condition.await(...)" should [¥AIKE ="
be called inside a "while" loop
Classes should not access their own subclasses 7N SE] fa="1
during initialization
"equals" method parameters should not be /N1 SE =1
marked "@Nonnull"
Exceptions should not be thrown in finally blocks |#AIXiE =2
"for" loop increment clauses should modify the |¥ABKE ="
loops' counters
Method overrides should not change contracts INKE e
Constants should not be defined in interfaces N SE] FEER
Generic wildcard types should not be used in 7N SE] ="
return types
Execution of the Garbage Collector should be 7N SE] fa="1
triggered only by the JVM
Derived exceptions should not hide their parents' |¥RIKi& f=-1
catch blocks
Conditionals should start on new lines N SE] =

60

sonar xiaomil Sonar Report
A conditionally executed single line should be 7N SE] =1
denoted by indentation
Methods setUp() and tearDown() should be 7N SE] =1
correctly annotated starting with JUnit4
Class members annotated with 7N SE =]
"@VisibleForTesting" should not be accessed
from production code
Fields in a "Serializable" class should either be RkE =21
transient or serializable
"switch" statements should have "default" clauses |IAlkiE F=c1
JUnit assertions should not be used in "run" 7N S =] fcy="
methods
"readResolve" methods should be inheritable 7N SE] e
Constant names should comply with a naming 7N SE] ="
convention
String literals should not be duplicated /NS E] =1
"static" base class members should not be 7N SE] =5
accessed via derived types
Class names should not shadow interfaces or 7N S =] fcy="
superclasses
"String#replace" should be preferred to 7N SE] =1
"String#replaceAll"
Try-with-resources should be used 7N SE =1
Boolean expressions should not be gratuitous /NS E] FE
Regexes containing characters subject to 7N SE] FE
normalization should use the CANON EQ flag
Track uses of "FIXME" tags 7N SE] FE
Similar tests should be grouped in a single 7N SE] FE
Parameterized test
Tests should be stable 7N SE] FE
Unused "private" methods should be removed 7N SE] FE
Parameters should be passed in the correct order [IAIKIE FE
"@Deprecated" code marked for removal should [3ABKE FE
never be used
Try-catch blocks should not be nested 7N SE FE
"URL.hashCode" and "URL.equals" should be IRRE FE
avoided
"ResultSet.isLast()" should not be used INKIE FE
Names of regular expressions named groups 7N STE] FE
should be used
Character classes in regular expressions should [3AEKiE FE
not contain the same character twice
Synchronized classes Vector, Hashtable, Stack 7N SE] FE
and StringBuffer should not be used
Redundant pairs of parentheses should be 7N STE] FE
removed
Local variables should not shadow class fields 7N SE] FE
Utility classes should not have public constructors [#AKIE FE
Labels should not be used 7N S E] FE
"static" members should be accessed statically BN S E] FE

61

declared "public"

sonar xiaomil Sonar Report
Unused type parameters should be removed NS E] FE
Classes with only "static" methods should not be |¥ABKIE FE
instantiated
"Lock" objects should not be "synchronized" N SE] FE
lg/lultiline blocks should be enclosed in curly 7N SE] FE

races

Assertion arguments should be passed in the 7N SE] FE
correct order
"switch" statements should not have too many [IABKE FE
"case" clauses
Regular expressions should not be too N SE| FE
complicated
AlssertJ "assertThatThrownBy" should not be used [¥ABKiE FE
alone
Assignments should not be made from within 7N ST FE
sub-expressions
Deprecated elements should have both the N SE] FE
annotation and the Javadoc tag
Ternary operators should not be nested BN S E] FE
Exception testing via JUnit ExpectedException 7N SE] FE
rule should not be mixed with other assertions
Test methods should not contain too many NKE FE
assertions
Inner class calls to super class methods should be [#REKE FE
unambiguous
‘List.remove()' should not be used in ascending |¥AEKE FE
‘for' loops
Only one method invocation is expected when |tALKiE FE
testing runtime exceptions
Nullness of parameters should be guaranteed N SE] FE
Unused "private" fields should be removed 7N SE FE
Only static class initializers should be used /NS E] FE
Unused method parameters should be removed |#AIKiE FE
Vararg method arguments should not be /N1 SE FE
confusing
Unused labels should be removed INKIE FE
Collapsible "if" statements should be merged NS E FE
JUnit assertTrue/assertFalse should be simplified |¥RERKIE FE
to the corresponding dedicated assertion
Throwable and Error should not be caught BN S E] FE
Whitespace for text block indent should be 7N SE] FE
consistent
Printf-style format strings should be used 7N SE] FE
correctly
Constructors should not be used to instantiate |tALKiE FE
"String”, "BigInteger”, "BigDecimal" and primitive-
wrapper classes
"Integer.toHexString" should not be used to build [#REKE FE
hexadecimal strings
Constructors of an "abstract” class should not be |IALKiE FE=

62

Reluctant ?uantifiers in regular expressions
should be followed by an expression that can't
match the empty string

sonar xiaomil Sonar Report

Enumeration should not be implemented 7N SE] FE
Empty arrays and collections should be returned |¥ABKiE FE
instead of null
Objects should not be created only to "getClass" |IALKE FE
"@Override" should be used on overriding and |¥ABKiE FE
implementing methods
Exceptions should be either logged or rethrown |IAEKE FE
but not both
"Preconditions” and logging arguments should [3ABKE FE
not require evaluation
"entrySet()" should be iterated when both the key |¥ABKiE FE
and value are needed
;C_Iass.forName()" should not load JDBC 4.0+ RRE FE

rivers
Two branches in a conditional structure should 7N STE] FE
not have exactly the same implementation
"Ma|o.get" and value test should be replaced with [¥AEKIE FE
single method call
"Arrays.stream” should be used for primitive 7N SE] FE
arrays
"@RequestMapping" methods should not be 7N SE] FE
"private”
Non-constructor methods should not have the 7N SE] FE=
same name as the enclosing class
"Threads" should not be used where "Runnables" |tAkkiE FE
are expected
"readObject" should not be "synchronized" N SE] FE
Java features should be preferred to Guava NS E] FE
"Stream.peek"” should be used with caution 7N SE] FE
Unused "private" classes should be removed NS E] FE
Raw types should not be used 7N SE] FE
A field should not duplicate the name of its INRE FE
containing class
Single-character alternations in regular IRRE FE
expressions should be replaced with character
classes
String multiline concatenation should be replaced | ALK& FE
with Text Blocks
Non-capturing groups without quantifier should |¥ABKE FE
not be used
Superfluous curly brace quantifiers should be 7N STE] FE
avoided
Character classes in regular expressions should 7N STE] FE
not contain only one character
Credentials Provider should be set explicitly when [¥AEKiE FE
creating a new "AwsClient"
Region should be set explicitly when creating a |IABKE FE
new "AwsClient"

7N SE] FE

63

implementations

sonar xiaomil Sonar Report
Reusable resources should be initialized at 7N STE] FE
construction time of Lambda functions
Unused assignments should be removed 7N SE FE
"DateUtils.truncate” from Apache Commons Lang [#RERE F=E
library should not be used
"Thread.sleep" should not be used in tests INKIE FE
Sections of code should not be commented out [#ABKIE FE
"for" loop stop conditions should be invariant INKIE FE
Anonymous inner classes containing only one 7N STE] FE
method should become lambdas
JUnit4 @Ignored and JUnit5 @Disabled NS FE
annotations should be used to disable tests and
should provide a rationale
"Object.wait(...)" should never be called on INKE FE
objects that implement
"java.util.concurrent.locks.Condition"
{jnheritance tree of classes should not be too 7N SE] FE=

eep

Generic exceptions should never be thrown BN S E] FE
Silly math should not be performed INKIE FE
Standard outputs should not be used directly to |tALKiE FE
log anything
Methods should not have too many parameters |[IAIKiE FE
Nested blocks of code should not be left empty [I4AIKIE FE
"writeObject" should not be the only 7N SE] F=E
"synchronized" code in a class
Classes named like "Exception” should extend N SE] FE
"Exception” or a subclass
Reflection should not be used to increase 7N SE| FE
accessibility of classes, methods, or fields
Exception types should not be tested using 7N SE] FE
"instanceof" in catch blocks
Static fields should not be updated in 7N SE] FE
constructors
Classes from "sun.*" packages should not be used |IAEKE FE
Collection constructors should not be used as INKE FE
java.util.function.Function
"java.nio.Files#delete" should be preferred BN S E] FE
Assignments should not be redundant 7N SE] FE
"eIsef“ statements should be clearly matched with [¥ABKIE FE
an "if"
Records should be used instead of ordinary RkE FE=E
classes when representing immutable data
structure
Regular expressions should not contain multiple |3ABKE FE
spaces
Deprecated annotations should include N SE] FE=E
explanations
Methods should not have identical 57N ST FE

64

strings

sonar xiaomil Sonar Report
Operator "instanceof" should be used instead of |[JABKIE FE
"A.class.isInstance()"
"Stream.toList()" method should be used instead |[#AkkE FE
of "collectors" when unmodifiable list needed
Redundant constructors/methods should be 7N SE FE2
avoided in records
Restricted Identifiers should not be used as 7N STE] FE
Identifiers
Asserts should not be used to check the 7N SE] FE
parameters of a public method
Regular expressions should not contain empty 7N STE] FE
groups
Consecutive Assert) "assertThat" statements 7N STE] IRE
should be chained
"throws" declarations should not be superfluous |¥AkkiE IRE
Character classes should be preferred over 7N SE IRE
reluctant quantifiers in reqular expressions
iA "while" loop should be used instead of a "for" |¥AKE RE
oop
"Collections.EMPTY_LIST", "EMPTY_MAP", and 7N S =] IRE
"EMPTY SET" should not be used
Chained Assert) assertions should be simplified to|tALiE IRE
the corresponding dedicated assertion
Empty statements should be removed N SE IRE
Return of boolean expressions should not be 7N SE IRE
wrapped into an "if-then-else" statement
Lloggers should be named for their enclosing 7N SE] RE
classes
Modifiers should be declared in the correct order |IAKE IRE
Boolean literals should not be redundant /NS E] IRE
Local variables should not be declared and then |IAlKE IRE
immediately returned or thrown
Unnecessary imports should be removed N SE IRE
Unused local variables should be removed N SE IRE
Exception testing via JUnit @Test annotation INERE RE
should be avoided
Catches should be combined N SE] RE
Mutable fields should not be "public static" NS E] IRE
Null checks should not be used with "instanceof" [#4AlkiE IRE
Avoid using boxed "Boolean” types directly in 7N STE] RE
boolean expressions
Public constants and fields initialized at NI S =] IRE
declaration should be "static final" rather than
merely "final"
Methods of "Random" that return floating point |3ABKE RE
values should not be used in random integer
generation
"@CheckForNull" or "@Nullable" should not be |IAkki& IRE
used on primitive types
Simple string literal should be used for single line |3REKE RE

65

sonar xiaomil Sonar Report
E?ca e sequences should not be used in text 7N S] IRE
ocks

Classes that override "clone" should be 7N SE] IRE
"Cloneable" and call "super.clone()"

Overriding methods should do more than simply |tALKiE RE

call the same method in the super class

Static non-final field names should comply with a |3REKE RE
naming convention

Primitive wrappers should not be instantiated 7N SE] RE

only for "toString" or "compareTo" calls

gtring.valueOf() should not be appended to a 7N STE] RE
tring

Collection.isEmpty() should be used to test for 7N S] IRE

emptiness

Case insensitive string comparisons should be |*ALKiE IRE
made without intermediate upper or lower casing

Test classes should comply with a naming 7N SE] RE

convention

Exception classes should be immutable 7N S E] IRE
Parsing should be used to convert "Strings" to ~ |¥/IkIE RE
primitives

Multiple variables should not be declared on the |RIki&E IRE

same line

"read(byte[],int,int)" should be overridden N SE IRE
"|SWitCh" statements should have at least 3 "case" |IALKiE IRE

clauses

"@Deprecated" code should not be used 7N S E] IRE
Maps with keys that are enum values should be |#AIKIE RE
replaced with EnumMap

iStrings should not be concatenated using '+' in a [YAEKIE RE
oop

"catch" clauses should do more than rethrow N SE IRE
Nested "enum"s should not be declared static N SE] RE
equals(Object obj)" should be overridden along |*ALKiE RE

with the "compareTo(T obj)" method

Private fields only used as local variables in /N0 SE| RE
methods should become local variables

Class variable fields should not have public 7N SE IRE

accessibility

Arrays should not be created for varargs 7N SE] RE
parameters

The upper bound of type variables and wildcards |[¥ABKiE RE

should not be "final"

Theddefault unnamed package should not be 7N SE] RE
use

Methods should not return constants N SE IRE

Type parameters should not shadow other type [¥ABKIE RE
parameters

Declarations should use Java collection interfaces |[YALKiE IRE

such as "List" rather than specific implementation
classes such as "LinkedList

66

sonar xiaomil Sonar Report
"public static" fields should be constant 7N SE] IRE
"StandardCharsets" constants should be RRE IRE
preferred
An iteration on a Collection should be performed |#AEKE IRE
on the type handled by the Collection
Jump statements should not be redundant N SE IRE
"close()" calls should not be redundant NS E] IRE
Boolean checks should not be inverted N SE IRE
éWS region should not be set with a hardcoded [¥ABKiE IRE

tring

Redundant casts should not be used 7N SE] IRE
Lambdas should not invoke other lambdas 7N S =] IRE
synchronously
"ThreadLocal.withlnitial" should be preferred NS E] IRE
Consumer Builders should be used 7N SE] IRE
Abstract classes without fields should be 7N SE IRE
converted to interfaces
Lambdas should be replaced with method N STE] RE
references
"tt())_String()" should never be called on a String 7N SE] IRE
object
Parentheses should be removed from a single 7N SE IRE
lambda input parameter when its type is inferred
Call to Mockito method "verify", "when" or KB RE
"given" should be simplified
JUnit rules should be used NS E RE
Annotation repetitions should not be wrapped 7N SE] IRE
Lambdas containing only one statement should |¥/ki& RE
not nest this statement in a block
Loops should not contain more than a single 7N SE] RE
"break" or "continue" statement
Abstract methods should not be redundant N SE IRE
"ﬁrivate“ methods called only by inner classes 7N STE] RE
should be moved to those classes
Fields in non-serializable classes should not be 7N STE] IRE
"transient”
Composed "@RequestMapping" variants should |¥AEKIE RE
be preferred
Interface names should comply with a naming INERE RE
convention
Package names should comply with a naming 7N ST RE
convention
Field names should comply with a naming 7N SE] RE
convention
Local variable and method parameter names 7N SE IRE
should comply with a naming convention
Type parameter names should comply with a 7N ST RE
naming convention
"write(byte[],int,int)" should be overridden 7N SE] IRE
Nested code blocks should not be used NS E] IRE

67

sonar xiaomil Sonar Report
URIs should not be hardcoded N SE] IRE
Array designators "[]" should be located after the |¥ABKiE IRE
type in method signatures
Array designators "[]" should be on the type, not |#AEKE RE
the variable
"finalize" should not set fields to "null" INKIE IRE
Arrays should not be copied using loops N SE] RE
Subclalmsses that add fields should override INKE IRE
"equals”
Class names should comply with a naming 7N SE] RE
convention
Method names should comply with a naming /NI STE] RE
convention
The diamond operator ("<>") should be used N SE] IRE
Switch arrow labels should not use redundant 7N SE] IRE
keywords
Regular expression quantifiers and character 7N SE] RE
classes should be used concisely
Pattern Matching for "instanceof" operator N SE] RE
should be used instead of simple "instanceof" +
cast
Text blocks should not be used in complex 7N SE] RE
expressions
Permitted t%pes of a sealed class should be 7N SE IRE
omitted if they are declared in the same file
'serialVersionUID' field should not be set to 'OL' in |3ALKE IRE
records
"enum" fields should not be publicly mutable N SE] IRE
"Stream" call chains should be simplified when [3ABKE RE
possible
Functional Interfaces should be as specialised as |3RERKIE RE
possible
Packages containing only "package-info.java" 7N STE] RE
should be removed
Classes should not be empty N SE] IRE
Track uses of "TODQO" tags 7N SE Br
Deprecated code should be removed 7N SE] 2R
JUnit5 test classes and methods should have ks B
default package visibility
Comma-separated labels should be used in /N1 SE B
Switch with colon case
RERE xml:Sonar way Bug:5 RiE:6 IRbkE:4
ALY i) ERLR 5
XML files containing a prolog header should start |Bug fa=c1
with "<?xml" characters
Dependencies should not have "system" scope Bug =1
Hibernate should not update database schemas |Bug e

68

sonar xiaomil Sonar Report
"SingleConnectionFactory" instances should be |Bug FE
set to "reconnectOnException”
"DefaultMessagelListenerContainer" instances Bug FE
should not drop messages during restarts
Struts validation forms should have unique il BT
names
Default EJB interceptors should be declared in PG BT
"ejb-jar.xml"
Defined filters should be used IRilE =
Basic authentication should not be used imilE =21
Exported component access should be restricted |ifgiA FE
with appropriate permissions
Custom permissions should not be defined in the |i&id IRE
"android.permission” namespace
Track uses of "FIXME" tags 3N SE FE
Sections of code should not be commented out |3RLKE FE
De%recated "${pom}" properties should not be [3REKIE RE
use
Track uses of "TODQ" tags N SE] B

69

	目录
	1. xiaomi1
	1.1. 概述
	1.2. 问题分析
	1.3. 问题详情
	1.4. 质量配置

