|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import pyecharts
|
|
|
|
|
from pyecharts.charts import Line
|
|
|
|
|
from pyecharts import options as opts
|
|
|
|
|
from pyecharts.charts import Bar
|
|
|
|
|
from pyecharts.globals import ThemeType
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
outcome_dir = r'E:\Data\Research\Outcome'
|
|
|
|
|
configs_dir = r'\Magellan+Smac+roberta-large-nli-stsb-mean-tokens+inter-0.5'
|
|
|
|
|
datasets_list = os.listdir(outcome_dir)
|
|
|
|
|
f1 = []
|
|
|
|
|
interpretability = []
|
|
|
|
|
for _ in datasets_list:
|
|
|
|
|
path = outcome_dir + rf'\{_}' + configs_dir
|
|
|
|
|
statistics_files = os.listdir(path)
|
|
|
|
|
for i in statistics_files:
|
|
|
|
|
if i.startswith('eval_result'):
|
|
|
|
|
with open(path + rf'\{i}', 'r') as f:
|
|
|
|
|
# 读取每一行的md,加入该文件的md列表
|
|
|
|
|
for line in f.readlines():
|
|
|
|
|
if line.startswith('F1'):
|
|
|
|
|
lt = line.split(' ')
|
|
|
|
|
value = float(lt[2].replace('%', ''))/100
|
|
|
|
|
f1.append(round(value, ndigits=3))
|
|
|
|
|
elif line.startswith('interpretability'):
|
|
|
|
|
lt = line.split(':')
|
|
|
|
|
value = float(lt[1])
|
|
|
|
|
interpretability.append(round(value, ndigits=3))
|
|
|
|
|
|
|
|
|
|
c = (
|
|
|
|
|
Bar()
|
|
|
|
|
.add_xaxis(
|
|
|
|
|
datasets_list
|
|
|
|
|
)
|
|
|
|
|
.add_yaxis('F1', f1)
|
|
|
|
|
.add_yaxis('Interpretability', interpretability)
|
|
|
|
|
.set_global_opts(
|
|
|
|
|
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
|
|
|
|
|
title_opts=opts.TitleOpts(title="各数据集F1值与预测结果可解释比例", subtitle="可解释性比重:0.5"),
|
|
|
|
|
)
|
|
|
|
|
.render("output/F1_Inter_bars.html")
|
|
|
|
|
)
|