You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/md_discovery/discovery_executor.py

201 lines
7.7 KiB

import operator
1 year ago
import numpy as np
import pandas as pd
import copy
import torch
from ConfigSpace import Configuration
1 year ago
from tqdm import tqdm
from settings import model, similarity_threshold, support_threshold, confidence_threshold
1 year ago
def is_minimal(md, md_list, target_col):
1 year ago
# 假设这个md是minimal
if len(md_list) == 0:
return True
minimal = True
for _ in md_list:
if isinstance(_, tuple):
_ = _[0]
1 year ago
if _ != md:
other_cols = list(set(_.keys()) - {target_col})
# 假设列表中每一个md都使当前md不minimal
exist = True
# 如果左边任何一个大于,则假设不成立
for col in other_cols:
if _[col] > md[col]:
exist = False
break
# 如果右边小于,假设也不成立
if _[target_col] < md[target_col]:
exist = False
# 任何一次假设成立当前md不minimal
if exist:
minimal = False
break
return minimal
def pairs_inference(path, target_col):
1 year ago
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data.fillna("", inplace=True)
data = data.astype(str)
columns = data.columns.values.tolist()
target_index = columns.index(target_col)
1 year ago
cols_but_target = list(set(columns) - {target_col})
length = data.shape[0]
width = data.shape[1]
sentences = []
for col in range(0, width):
for row in range(0, length):
cell_value = data.values[row, col]
sentences.append(cell_value)
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda")
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
sim_tensor = torch.matmul(norm_table_tensor, norm_table_tensor.transpose(1, 2))
# sim_tensor = torch.round(sim_tensor, decimals=3)
1 year ago
1 year ago
# torch.save(sim_tensor, md_output_dir + "tensor.pt")
1 year ago
md_list = []
minimal_vio = []
init_md = {}
for col in columns:
1 year ago
init_md[col] = 1 if col == target_col else -1
1 year ago
md_list.append(init_md)
for row1 in tqdm(range(0, length - 1)):
1 year ago
terminate = False
for row2 in range(row1 + 1, length):
violated_mds = []
# sims是两行的相似度
sims = {}
for col_index in range(0, width):
col = columns[col_index]
similarity = sim_tensor[col_index, row1, row2].item()
sims[col] = similarity
# 寻找violated md,从md列表中删除并加入vio列表
for md in md_list[:]:
lhs_satis = True
rhs_satis = True
for col in cols_but_target:
1 year ago
if sims[col] < md[col]:
lhs_satis = False
break
if sims[target_col] < md[target_col]:
rhs_satis = False
if lhs_satis == True and rhs_satis == False:
md_list.remove(md)
violated_mds.append(md)
1 year ago
# for vio_md in violated_mds:
# # 特殊化左侧
# for col in cols_but_target:
1 year ago
# if sims[col] + 0.01 <= 1:
1 year ago
# spec_l_md = copy.deepcopy(vio_md)
1 year ago
# spec_l_md[col] = simt if sims[col] < simt else sims[col] + 0.01
1 year ago
# if is_minimal(spec_l_md, md_list, target_col):
# md_list.append(spec_l_md)
# if vio_md not in minimal_vio:
# minimal_vio.append(vio_md)
1 year ago
for vio_md in violated_mds:
vio_md_support, vio_md_confidence = get_metrics(vio_md, data, sim_tensor, target_col, target_index)
if vio_md_support >= support_threshold:
1 year ago
for col in cols_but_target:
if sims[col] < 1.0:
spec_l_md = copy.deepcopy(vio_md)
if sims[col] < similarity_threshold:
spec_l_md[col] = similarity_threshold
1 year ago
else:
if sims[col] + 0.01 <= 1.0:
spec_l_md[col] = sims[col] + 0.01
else:
spec_l_md[col] = 1.0
if is_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md)
if vio_md not in minimal_vio:
minimal_vio.append(vio_md)
1 year ago
if len(md_list) == 0:
terminate = True
break
if terminate:
break
1 year ago
1 year ago
if len(minimal_vio) > 0:
for md in minimal_vio[:]:
1 year ago
support, confidence = get_metrics(md, data, sim_tensor, target_col, target_index)
if support >= support_threshold and confidence >= confidence_threshold:
minimal_vio.append((md, support, confidence))
minimal_vio.remove(md)
1 year ago
1 year ago
if len(md_list) > 0:
1 year ago
# 去除重复MD
tmp = []
for _ in md_list:
if _ not in tmp:
tmp.append(_)
md_list = tmp
# 去除support小于阈值MD
for _ in md_list[:]:
1 year ago
support, confidence = get_metrics(_, data, sim_tensor, target_col, target_index)
if support >= support_threshold and confidence >= confidence_threshold:
md_list.append((_, support, confidence))
1 year ago
md_list.remove(_)
1 year ago
# 去除不minimal的MD
for md_tuple in md_list[:]:
if not is_minimal(md_tuple[0], md_list, target_col) and md_tuple[2] < 0.5:
md_list.remove(md_tuple)
1 year ago
if len(minimal_vio) > 0:
for vio_tuple in minimal_vio[:]:
if not is_minimal(vio_tuple[0], md_list, target_col) and vio_tuple[2] < 0.5:
minimal_vio.remove(vio_tuple)
1 year ago
if len(minimal_vio) > 0:
for vio_tuple in minimal_vio[:]:
if not is_minimal(vio_tuple[0], minimal_vio, target_col) and vio_tuple[2] < 0.5:
minimal_vio.remove(vio_tuple)
result = []
result.extend(md_list)
result.extend(minimal_vio)
result.sort(key=operator.itemgetter(2), reverse=True)
print(f'\033[33mList Length: {len(result)}\033[0m')
return result
1 year ago
def get_metrics(current_md, data, sim_tensor, target_col, target_index):
columns = data.columns.values.tolist()
length = data.shape[0]
width = data.shape[1]
md_tensor = list(current_md.values())
md_tensor = torch.tensor(md_tensor, device='cuda')
md_tensor_2d = md_tensor.unsqueeze(1)
md_tensor_3d = md_tensor_2d.unsqueeze(2)
md_tensor_3d = md_tensor_3d.repeat(1, length, length)
sim_tensor = torch.round(sim_tensor, decimals=4)
sup_tensor = torch.ge(sim_tensor, md_tensor_3d)
ini_slice = torch.ones((length, length), dtype=torch.bool, device='cuda')
for i in range(0, width):
if i != target_index:
sup_tensor_slice = sup_tensor[i]
ini_slice = torch.logical_and(ini_slice, sup_tensor_slice)
sup_tensor_int = ini_slice.int()
1 year ago
support_Naumann = torch.count_nonzero(sup_tensor_int).item()
support_Naumann = (support_Naumann - length) / 2
ini_slice = torch.logical_and(ini_slice, sup_tensor[target_index])
conf_tensor_int = ini_slice.int()
1 year ago
support_Fan = torch.count_nonzero(conf_tensor_int).item()
support_Fan = (support_Fan - length) / 2
confidence = support_Fan / support_Naumann if support_Naumann > 0 else 0
1 year ago
return support_Fan, confidence