You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/inference_from_record_pairs.py

154 lines
5.5 KiB

import pandas as pd
import time
import Levenshtein
import copy
def my_Levenshtein_ratio(str1, str2):
return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2))
def if_minimal(md, md_list, target_col):
# 假设这个md是minimal
minimal = True
for _ in md_list:
if _ != md:
# 假设列表中每一个md都使当前md不minimal
exist = True
# 如果左边任何一个大于,则假设不成立
for col in list(set(_.keys()) - {target_col}):
if _[col] > md[col]:
exist = False
# 如果右边小于,假设也不成立
if _[target_col] < md[target_col]:
exist = False
# 任何一次假设成立当前md不minimal
if exist:
minimal = False
break
return minimal
def satisfy_confidence(md, df, conf_thresh, target_col):
support = 0
support_plus = 0
for row1 in df.itertuples():
i = row1[0]
df_slice = df[i + 1:]
for row2 in df_slice.itertuples():
left_satisfy = True
both_satisfy = True
for col in df.columns.values.tolist():
sim = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
if col == target_col:
if sim < 1:
both_satisfy = False
else:
if sim < md[col]:
left_satisfy = False
both_satisfy = False
if left_satisfy:
support += 1
if both_satisfy:
support_plus += 1
if support == 0:
return False, 0.0
confidence = support_plus / support
return confidence >= conf_thresh, confidence
def inference_from_record_pairs(path, threshold, target_col):
data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1')
data = data.astype(str)
columns = data.columns.values.tolist()
md_list = []
minimal_vio = []
init_md = {}
for col in columns:
init_md[col] = 1 if col == target_col else 0
md_list.append(init_md)
for row1 in data.itertuples():
# 获取当前行的索引,从后一行开始切片
i = row1[0]
data1 = data[i + 1:]
for row2 in data1.itertuples():
violated_mds = []
# sims是两行的相似度
sims = {}
for col in columns:
similarity = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col))
sims[col] = similarity
# 寻找violated md,从md列表中删除并加入vio列表
for md in md_list:
lhs_satis = True
rhs_satis = True
for col in list(set(columns) - {target_col}):
if sims[col] < md[col]:
lhs_satis = False
if sims[target_col] < md[target_col]:
rhs_satis = False
if lhs_satis == True and rhs_satis == False:
md_list.remove(md)
violated_mds.append(md)
minimal_vio.extend(violated_mds)
for vio_md in violated_mds:
# 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值
# if sims[target_col] >= threshold:
# new_rhs = sims[target_col]
# spec_r_md = copy.deepcopy(vio_md)
# spec_r_md[target_col] = new_rhs
# if if_minimal(spec_r_md, md_list, target_col):
# md_list.append(spec_r_md)
# 特殊化左侧
for col in list(set(columns) - {target_col}):
if sims[col] + 0.001 <= 1:
spec_l_md = copy.deepcopy(vio_md)
spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.001
if if_minimal(spec_l_md, md_list, target_col):
md_list.append(spec_l_md)
for vio in minimal_vio:
if not if_minimal(vio, md_list, target_col):
minimal_vio.remove(vio)
tmp = copy.deepcopy(minimal_vio)
for _ in tmp:
satis, conf = satisfy_confidence(_, data, 0.8, target_col)
if not satis:
minimal_vio.remove(_)
for _ in tmp:
if not if_minimal(_, minimal_vio, target_col):
minimal_vio.remove(_)
return md_list, minimal_vio
if __name__ == '__main__':
# 目前可以仿照这个main函数写
path = "/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/DBLP-ACM/output/7.6/TP_single_tuple.csv"
start = time.time()
# 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8)
# 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段
mds, mds_vio = inference_from_record_pairs(path, 0.7, 'id')
# 将列表1写入本地路径需自己修改
md_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_md_list.txt'
with open(md_path, 'w') as f:
for _ in mds:
f.write(str(_) + '\n')
# 将列表2写入本地路径需自己修改
vio_path = '/home/w/A-New Folder/8.14/Paper Dataset/TP_vio_list.txt'
with open(vio_path, 'w') as f:
for _ in mds_vio:
f.write(str(_) + '\n')
print(time.time() - start)