You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/ml_er/Goods Dataset.py

274 lines
12 KiB

1 year ago
import sys
from py_entitymatching.debugmatcher.debug_gui_utils import _get_metric
sys.path.append('/home/w/PycharmProjects/py_entitymatching/py_entitymatching')
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
import time
import six
from md_discovery.functions.multi_process_infer_by_pairs import my_Levenshtein_ratio
def process_prediction_for_md_discovery(pred: pd.DataFrame, tp_single_tuple_path: str = "output/tp_single_tuple.csv", fn_single_tuple_path: str = "output/fn_single_tuple.csv"):
tp = pred[(pred['gold'] == 1) & (pred['predicted'] == 1)]
fn = pred[(pred['gold'] == 1) & (pred['predicted'] == 0)]
# 将真阳/假阴表中左右ID调整一致
for index, row in tp.iterrows():
tp.loc[index, "rtable_id"] = row["ltable_id"]
for index, row in fn.iterrows():
fn.loc[index, "rtable_id"] = row["ltable_id"]
pred_columns = pred.columns.values.tolist()
l_columns = []
r_columns = []
columns = [] # todo 前提是两张表内对应字段名调整一致
for _ in pred_columns:
if _.startswith('ltable'):
l_columns.append(_)
elif _.startswith('rtable'):
r_columns.append(_)
for _ in l_columns:
columns.append(_.replace('ltable_', ''))
tpl = tp[l_columns]
tpr = tp[r_columns]
tpl.columns = columns
tpr.columns = columns
fnl = fn[l_columns]
fnr = fn[r_columns]
fnl.columns = columns
fnr.columns = columns
tp_single_tuple = pd.concat([tpl, tpr])
fn_single_tuple = pd.concat([fnl, fnr])
tp_single_tuple.to_csv(tp_single_tuple_path, sep=',', index=False, header=True)
fn_single_tuple.to_csv(fn_single_tuple_path, sep=',', index=False, header=True)
def evaluate_prediction(df: pd.DataFrame, labeled_attr: str, predicted_attr: str, matching_number: int,
test_proportion: float) -> dict:
new_df = df.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
my_recall = num_true_positives / (matching_number * test_proportion)
return {"precision": precision, "recall": recall, "F1": F1, "my_recall": my_recall}
def load_mds(paths: list) -> list:
if len(paths) == 0:
return []
all_mds = []
# 传入md路径列表
for md_path in paths:
mds = []
# 打开每一个md文件
with open(md_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
for line in f.readlines():
md_metadata = line.strip().split('\t')
md = eval(md_metadata[0].replace('md:', ''))
mds.append(md)
all_mds.extend(mds)
return all_mds
def is_explicable(row, all_mds: list) -> bool:
attrs = all_mds[0].keys() # 从第一条md中读取所有字段
for md in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
threshold = md[a]
if my_Levenshtein_ratio(str(getattr(row, 'ltable_'+a)), str(getattr(row, 'rtable_'+a))) < threshold:
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return True # 任意一条md能解释直接返回
return False # 遍历结束,不能解释
def load_data(left_path: str, right_path: str, mapping_path: str):
left = pd.read_csv(left_path, encoding='ISO-8859-1')
cm.set_key(left, left.columns.values.tolist()[0])
left.fillna("", inplace=True)
left = left.astype(str)
right = pd.read_csv(right_path, encoding='ISO-8859-1')
cm.set_key(right, right.columns.values.tolist()[0])
right.fillna("", inplace=True)
right = right.astype(str)
mapping = pd.read_csv(mapping_path)
mapping = mapping.astype(str)
return left, right, mapping
if __name__ == '__main__':
# 读入公开数据,注册并填充空值
path_Amazon = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amazon.csv'
path_Google = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/GoogleProducts.csv'
path_Mappings = '/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/Amzon_GoogleProducts_perfectMapping.csv'
Amazon = pd.read_csv(path_Amazon, encoding='ISO-8859-1')
cm.set_key(Amazon, 'id')
Amazon.fillna("", inplace=True)
Google = pd.read_csv(path_Google, encoding='ISO-8859-1')
cm.set_key(Google, 'id')
Google.fillna("", inplace=True)
Mappings = pd.read_csv(path_Mappings)
# 仅保留两表中出现在映射表中的行,增大正样本比例
l_id_list = []
r_id_list = []
# 全部转为字符串
Amazon = Amazon.astype(str)
Google = Google.astype(str)
Mappings = Mappings.astype(str)
matching_number = len(Mappings) # 所有阳性样本数商品数据集应为1300
for index, row in Mappings.iterrows():
l_id_list.append(row["idAmazon"])
r_id_list.append(row["idGoogleBase"])
selected_Amazon = Amazon[Amazon['id'].isin(l_id_list)]
selected_Amazon = selected_Amazon.rename(columns={'title': 'name'})
selected_Google = Google[Google['id'].isin(r_id_list)]
cm.set_key(selected_Amazon, 'id')
cm.set_key(selected_Google, 'id')
# block 并将gold标记为0
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_Amazon, selected_Google, 'name', 'name',
l_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
r_output_attrs=['id', 'name', 'description', 'manufacturer', 'price'],
overlap_size=1, show_progress=False)
candidate['gold'] = 0
start = time.time()
candidate_match_rows = []
for index, row in candidate.iterrows():
l_id = row["ltable_id"]
map_row = Mappings[Mappings['idAmazon'] == l_id]
if map_row is not None:
r_id = map_row["idGoogleBase"]
for value in r_id:
if value == row["rtable_id"]:
candidate_match_rows.append(row["_id"])
else:
continue
for row in candidate_match_rows:
candidate.loc[row, 'gold'] = 1
# 裁剪负样本,保持正负样本数量一致
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
# 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
cm.set_key(candidate_for_train_test, '_id')
cm.set_fk_ltable(candidate_for_train_test, 'ltable_id')
cm.set_fk_rtable(candidate_for_train_test, 'rtable_id')
cm.set_ltable(candidate_for_train_test, selected_Amazon)
cm.set_rtable(candidate_for_train_test, selected_Google)
# 分为训练测试集
train_proportion = 0.7
test_proportion = 0.3
sets = em.split_train_test(candidate_for_train_test, train_proportion=0.7, random_state=0)
train_set = sets['train']
test_set = sets['test']
dt = em.DTMatcher(name='DecisionTree', random_state=0)
svm = em.SVMMatcher(name='SVM', random_state=0)
rf = em.RFMatcher(name='RF', random_state=0)
lg = em.LogRegMatcher(name='LogReg', random_state=0)
ln = em.LinRegMatcher(name='LinReg')
nb = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_Amazon, selected_Google, validate_inferred_attr_types=False)
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
result = em.select_matcher([dt, rf, svm, ln, lg, nb], table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
k=5,
target_attr='gold', metric_to_select_matcher='f1', random_state=0)
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
attrs_after=['ltable_name', 'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name', 'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
show_progress=False)
rf.fit(table=train_feature_vecs,
exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'gold'],
target_attr='gold')
predictions = rf.predict(table=test_feature_vecs, exclude_attrs=['_id', 'ltable_id', 'rtable_id', 'ltable_name',
'ltable_description', 'ltable_manufacturer',
'ltable_price', 'rtable_name',
'rtable_description',
'rtable_manufacturer', 'rtable_price', 'gold'],
append=True, target_attr='predicted', inplace=False)
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, test_proportion)
print(indicators)
# 计算可解释性
################################################################################################################
predictions = predictions[
['ltable_id', 'rtable_id', 'ltable_name', 'ltable_description', 'ltable_manufacturer', 'ltable_price',
'rtable_name', 'rtable_description', 'rtable_manufacturer', 'rtable_price', 'gold', 'predicted']]
epl_match = 0 # 可解释预测match
nepl_mismatch = 0 # 不可解释预测mismatch
p_md = "/home/w/A-New Folder/8.14/Goods Dataset/TP_md_list.txt"
p_vio = "/home/w/A-New Folder/8.14/Goods Dataset/TP_vio_list.txt"
md_paths: list = [p_md, p_vio]
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
for row in predictions.itertuples():
if is_explicable(row, md_list):
if getattr(row, 'predicted') == 1:
epl_match += 1
else:
if getattr(row, 'predicted') == 0:
nepl_mismatch += 1
epl_ability = (epl_match + nepl_mismatch) / len(predictions)
################################################################################################################
process_prediction_for_md_discovery(predictions)
# todo 将prediction表处理成真阳/假阴表提供给挖掘算法
output_path = "output/eval_result" + str(time.time()) + ".txt"
with open(output_path, 'w') as f:
for key, value in six.iteritems(_get_metric(eval_result)):
f.write(key + " : " + value)
f.write('\n')
f.write('my_recall:' + str(indicators["my_recall"]))
f.write('\n')