You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/hpo/er_model_hpo.py

297 lines
14 KiB

1 year ago
import os
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer
1 year ago
from ConfigSpace.conditions import InCondition
1 year ago
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from smac import HyperparameterOptimizationFacade, Scenario
from md_discovery.functions.multi_process_infer_by_pairs import my_Levenshtein_ratio
1 year ago
from settings import *
1 year ago
1 year ago
# 数据在外部加载
########################################################################################################################
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
ltable.fillna("", inplace=True)
rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
rtable.fillna("", inplace=True)
mappings = pd.read_csv(mapping_path)
lid_mapping_list = []
rid_mapping_list = []
# 全部转为字符串
ltable = ltable.astype(str)
rtable = rtable.astype(str)
mappings = mappings.astype(str)
matching_number = len(mappings) # 所有阳性样本数商品数据集应为1300
for index, row in mappings.iterrows():
lid_mapping_list.append(row[mapping_lid])
rid_mapping_list.append(row[mapping_rid])
# 仅保留两表中出现在映射表中的行,增大正样本比例
selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
1 year ago
tables_id = rtable_id # 不论左表右表ID字段名是否一致经上一行调整统一以右表为准
1 year ago
selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
########################################################################################################################
1 year ago
def evaluate_prediction(df: pd.DataFrame, labeled_attr: str, predicted_attr: str, matching_number: int,
test_proportion: float) -> dict:
new_df = df.reset_index(drop=False, inplace=False)
gold = new_df[labeled_attr]
predicted = new_df[predicted_attr]
gold_negative = gold[gold == 0].index.values
gold_positive = gold[gold == 1].index.values
predicted_negative = predicted[predicted == 0].index.values
predicted_positive = predicted[predicted == 1].index.values
false_positive_indices = list(set(gold_negative).intersection(predicted_positive))
true_positive_indices = list(set(gold_positive).intersection(predicted_positive))
false_negative_indices = list(set(gold_positive).intersection(predicted_negative))
num_true_positives = float(len(true_positive_indices))
num_false_positives = float(len(false_positive_indices))
num_false_negatives = float(len(false_negative_indices))
precision_denominator = num_true_positives + num_false_positives
recall_denominator = num_true_positives + num_false_negatives
precision = 0.0 if precision_denominator == 0.0 else num_true_positives / precision_denominator
recall = 0.0 if recall_denominator == 0.0 else num_true_positives / recall_denominator
F1 = 0.0 if precision == 0.0 and recall == 0.0 else (2.0 * precision * recall) / (precision + recall)
my_recall = num_true_positives / (matching_number * test_proportion)
return {"precision": precision, "recall": recall, "F1": F1, "my_recall": my_recall}
def load_mds(paths: list) -> list:
if len(paths) == 0:
return []
all_mds = []
# 传入md路径列表
for md_path in paths:
1 year ago
if not os.path.exists(md_path):
continue
1 year ago
mds = []
# 打开每一个md文件
with open(md_path, 'r') as f:
# 读取每一行的md加入该文件的md列表
for line in f.readlines():
md_metadata = line.strip().split('\t')
md = eval(md_metadata[0].replace('md:', ''))
1 year ago
confidence = eval(md_metadata[2].replace('confidence:', ''))
if confidence > 0:
mds.append(md)
1 year ago
all_mds.extend(mds)
return all_mds
def is_explicable(row, all_mds: list) -> bool:
attrs = all_mds[0].keys() # 从第一条md中读取所有字段
for md in all_mds:
explicable = True # 假设这条md能解释当前元组
for a in attrs:
threshold = md[a]
1 year ago
if my_Levenshtein_ratio(str(getattr(row, 'ltable_' + a)), str(getattr(row, 'rtable_' + a))) < threshold:
1 year ago
explicable = False # 任意一个字段的相似度达不到阈值这条md就不能解释当前元组
break # 不再与当前md的其他相似度阈值比较跳转到下一条md
if explicable:
return True # 任意一条md能解释直接返回
return False # 遍历结束,不能解释
1 year ago
class Classifier:
1 year ago
@property
def configspace(self) -> ConfigurationSpace:
# Build Configuration Space which defines all parameters and their ranges
cs = ConfigurationSpace(seed=0)
1 year ago
block_attr_items = selected_attrs[:]
1 year ago
block_attr_items.remove(tables_id)
1 year ago
block_attr = Categorical("block_attr", block_attr_items)
1 year ago
overlap_size = Integer("overlap_size", (1, 3), default=1)
1 year ago
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap")
1 year ago
1 year ago
use_overlap_size = InCondition(child=overlap_size, parent=ml_blocker, values=["over_lap"])
1 year ago
cs.add_hyperparameters([block_attr, overlap_size, ml_matcher, ml_blocker])
1 year ago
cs.add_conditions([use_overlap_size])
1 year ago
return cs
# train 就是整个函数 只需将返回结果由预测变成预测结果的评估
1 year ago
def train(self, config: Configuration, seed: int = 0) -> float:
1 year ago
attrs_with_l_prefix = ['ltable_' + i for i in selected_attrs] # 字段名加左前缀
attrs_with_r_prefix = ['rtable_' + i for i in selected_attrs] # 字段名加右前缀
cm.set_key(selected_ltable, tables_id)
cm.set_key(selected_rtable, tables_id)
1 year ago
if config["ml_blocker"] == "over_lap":
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
overlap_size=config["overlap_size"], show_progress=False, n_jobs=-1)
elif config["ml_blocker"] == "attr_equiv":
blocker = em.AttrEquivalenceBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"], config["block_attr"],
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs, n_jobs=-1)
1 year ago
candidate['gold'] = 0
candidate_match_rows = []
for index, row in candidate.iterrows():
1 year ago
l_id = row['ltable_' + tables_id]
1 year ago
map_row = mappings[mappings[mapping_lid] == l_id]
1 year ago
if map_row is not None:
1 year ago
r_id = map_row[mapping_rid]
1 year ago
for value in r_id:
1 year ago
if value == row['rtable_' + tables_id]:
1 year ago
candidate_match_rows.append(row["_id"])
else:
continue
for row in candidate_match_rows:
candidate.loc[row, 'gold'] = 1
# 裁剪负样本,保持正负样本数量一致
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
1 year ago
if len(candidate_mismatch) > len(candidate_match):
candidate_mismatch = candidate_mismatch.sample(n=len(candidate_match))
1 year ago
# 拼接正负样本
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
1 year ago
if len(candidate_for_train_test) == 0:
return 1
1 year ago
cm.set_key(candidate_for_train_test, '_id')
1 year ago
cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + tables_id)
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + tables_id)
1 year ago
cm.set_ltable(candidate_for_train_test, selected_ltable)
cm.set_rtable(candidate_for_train_test, selected_rtable)
1 year ago
# 分为训练测试集
train_proportion = 0.7
test_proportion = 0.3
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
train_set = sets['train']
test_set = sets['test']
1 year ago
cm.set_key(train_set, '_id')
cm.set_fk_ltable(train_set, 'ltable_' + tables_id)
cm.set_fk_rtable(train_set, 'rtable_' + tables_id)
cm.set_ltable(train_set, selected_ltable)
cm.set_rtable(train_set, selected_rtable)
cm.set_key(test_set, '_id')
cm.set_fk_ltable(test_set, 'ltable_' + tables_id)
cm.set_fk_rtable(test_set, 'rtable_' + tables_id)
cm.set_ltable(test_set, selected_ltable)
cm.set_rtable(test_set, selected_rtable)
1 year ago
if config["ml_matcher"] == "dt":
matcher = em.DTMatcher(name='DecisionTree', random_state=0)
elif config["ml_matcher"] == "svm":
matcher = em.SVMMatcher(name='SVM', random_state=0)
elif config["ml_matcher"] == "rf":
matcher = em.RFMatcher(name='RF', random_state=0)
elif config["ml_matcher"] == "lg":
matcher = em.LogRegMatcher(name='LogReg', random_state=0)
elif config["ml_matcher"] == "ln":
matcher = em.LinRegMatcher(name='LinReg')
elif config["ml_matcher"] == "nb":
matcher = em.NBMatcher(name='NaiveBayes')
feature_table = em.get_features_for_matching(selected_ltable, selected_rtable, validate_inferred_attr_types=False)
1 year ago
train_feature_vecs = em.extract_feature_vecs(train_set,
feature_table=feature_table,
attrs_after=['gold'],
show_progress=False)
1 year ago
test_feature_after = attrs_with_l_prefix[:]
test_feature_after.extend(attrs_with_r_prefix)
for _ in test_feature_after:
if _.endswith(tables_id):
test_feature_after.remove(_)
test_feature_after.append('gold')
1 year ago
test_feature_vecs = em.extract_feature_vecs(test_set, feature_table=feature_table,
1 year ago
attrs_after=test_feature_after, show_progress=False)
fit_exclude = ['_id', 'ltable_' + tables_id, 'rtable_' + tables_id, 'gold']
matcher.fit(table=train_feature_vecs, exclude_attrs=fit_exclude, target_attr='gold')
test_feature_after.extend(['_id', 'ltable_' + tables_id, 'rtable_' + tables_id])
predictions = matcher.predict(table=test_feature_vecs, exclude_attrs=test_feature_after,
append=True, target_attr='predicted', inplace=False)
1 year ago
eval_result = em.eval_matches(predictions, 'gold', 'predicted')
em.print_eval_summary(eval_result)
indicators = evaluate_prediction(predictions, 'gold', 'predicted', matching_number, test_proportion)
print(indicators)
# 计算可解释性
1 year ago
predictions_attrs = []
predictions_attrs.extend(attrs_with_l_prefix)
predictions_attrs.extend(attrs_with_r_prefix)
predictions_attrs.extend(['gold', 'predicted'])
predictions = predictions[predictions_attrs]
1 year ago
# 默认路径为 "../md_discovery/output/xxx.txt"
# 真阳/假阴 mds/vio 共4个md文件
1 year ago
md_paths = ['md_discovery/output/tp_mds.txt', 'md_discovery/output/tp_vio.txt',
'md_discovery/output/fn_mds.txt', 'md_discovery/output/fn_vio.txt']
1 year ago
epl_match = 0 # 可解释预测match
nepl_mismatch = 0 # 不可解释预测mismatch
md_list = load_mds(md_paths) # 从全局变量中读取所有的md
1 year ago
if len(md_list) > 0:
for row in predictions.itertuples():
if is_explicable(row, md_list):
if getattr(row, 'predicted') == 1:
epl_match += 1
else:
if getattr(row, 'predicted') == 0:
nepl_mismatch += 1
interpretability = (epl_match + nepl_mismatch) / len(predictions) # 可解释性
# if indicators["my_recall"] >= 0.8:
# f1 = indicators["F1"]
# else:
# f1 = (2.0 * indicators["precision"] * indicators["my_recall"]) / (indicators["precision"] + indicators["my_recall"])
if indicators["my_recall"] < 0.8:
return 1
f1 = indicators["F1"]
performance = interpre_weight * interpretability + (1 - interpre_weight) * f1
1 year ago
return 1 - performance
1 year ago
def ml_er_hpo():
1 year ago
classifier = Classifier()
1 year ago
# Next, we create an object, holding general information about the run
scenario = Scenario(
classifier.configspace,
1 year ago
deterministic=True,
n_trials=10, # We want to run max 50 trials (combination of config and seed)
1 year ago
)
1 year ago
initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)
1 year ago
# Now we use SMAC to find the best hyperparameters
smac = HyperparameterOptimizationFacade(
scenario,
classifier.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
# Get cost of default configuration
default_cost = smac.validate(classifier.configspace.get_default_configuration())
print(f"Default cost: {default_cost}")
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
print(f"Configuration:{incumbent.values()}")
1 year ago
return incumbent