|
|
|
@ -1,3 +1,4 @@
|
|
|
|
|
# https://github.com/GISerWang/Spatio-temporal-Clustering.git
|
|
|
|
|
import os
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
@ -43,7 +44,7 @@ def DBSCAN(data_, eps, minPts):
|
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plotFeature(data_, labels_, output_path_):
|
|
|
|
|
def plotFeature(md_keys_, data_, labels_, output_path_):
|
|
|
|
|
clusterNum = len(set(labels_))
|
|
|
|
|
fig = plt.figure()
|
|
|
|
|
scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
|
|
|
|
@ -52,6 +53,10 @@ def plotFeature(data_, labels_, output_path_):
|
|
|
|
|
colorStyle = scatterColors[i % len(scatterColors)]
|
|
|
|
|
subCluster = data_[np.where(labels_ == i)]
|
|
|
|
|
ax.scatter(subCluster[:, 0], subCluster[:, 1], subCluster[:, 2], c=colorStyle, s=12)
|
|
|
|
|
ax.set_xlabel(md_keys_[0], rotation=0) # 设置标签角度
|
|
|
|
|
ax.set_ylabel(md_keys_[1], rotation=-45)
|
|
|
|
|
ax.set_zlabel(md_keys_[2], rotation=0)
|
|
|
|
|
plt.title(output_path_.split('\\')[-1].split('.')[0])
|
|
|
|
|
plt.savefig(output_path_, dpi=500)
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
@ -62,12 +67,14 @@ if __name__ == '__main__':
|
|
|
|
|
dataset_name_list = [f.name for f in os.scandir(outcome_path) if f.is_dir()]
|
|
|
|
|
for dataset_name in dataset_name_list:
|
|
|
|
|
absolute_path = outcome_path + rf'\{dataset_name}' + config_dir + r'\mds.txt'
|
|
|
|
|
md_keys = []
|
|
|
|
|
with open(absolute_path, 'r') as f:
|
|
|
|
|
# 读取每一行的md,加入该文件的md列表
|
|
|
|
|
data = []
|
|
|
|
|
for line in f.readlines():
|
|
|
|
|
md_metadata = line.strip().split('\t')
|
|
|
|
|
md_tuple = eval(md_metadata[1])
|
|
|
|
|
md_keys = list(md_tuple[0].keys())[1:4]
|
|
|
|
|
md_values = list(md_tuple[0].values())
|
|
|
|
|
data.append(md_values[1:4])
|
|
|
|
|
if len(data) == 10000:
|
|
|
|
@ -76,4 +83,4 @@ if __name__ == '__main__':
|
|
|
|
|
data = np.array(data, dtype=np.float32)
|
|
|
|
|
labels = DBSCAN(data, 0.5, 30)
|
|
|
|
|
output_path = outcome_path + rf'\{dataset_name}.png'
|
|
|
|
|
plotFeature(data, labels, output_path)
|
|
|
|
|
plotFeature(md_keys, data, labels, output_path)
|
|
|
|
|