将blocking阶段单拎出来;

重写了MD挖掘代码(后续要改成随机生成加过滤)
MD-metrics-HPO
HuangJintao 8 months ago
parent d03d300f8c
commit a6a58e178f

@ -13,16 +13,12 @@ class Classifier:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
selected_attrs = ltable.columns.values.tolist()
block_attr_items = selected_attrs[:]
block_attr_items.remove(ltable_id)
block_attr = Categorical("block_attr", block_attr_items)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf", "lg", "ln", "nb"], default="rf")
ml_blocker = Categorical("ml_blocker", ["over_lap", "attr_equiv"], default="over_lap")
# todo 每个分类器的超参数
tree_criterion = Categorical("dt_criterion", ["gini", "entropy", "log_loss"], default="gini")
cs.add_hyperparameters([block_attr, ml_matcher, ml_blocker])
cs.add_hyperparameters([ml_matcher])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:

@ -19,16 +19,9 @@ from settings import *
def md_discover(config: Configuration, source_path, target_path):
# 输入csv文件路径md左侧相似度阈值md右侧目标字段
# 输出2个md列表列表1中md无violation,列表2中md有violation但confidence满足阈值
# mds_list = pairs_inference(source_path, target_attr)
mds_list = discover(source_path, target_attr)
with open(target_path, 'w') as f:
for _ in mds_list:
f.write('Target:'+str(target_attr) + '\t')
f.write(str(_))
f.write('\n')
# if __name__ == '__main__':
# md_discover()

@ -0,0 +1,157 @@
import pandas as pd
import torch
import matplotlib.pyplot as plt
from torch import LongTensor
from tqdm import tqdm
from settings import *
# note 对表进行嵌入时定位了有空值的cell, 计算相似度时有空值则置为-1.0000
def mining(train: pd.DataFrame):
# data is train set, in which each row represents a tuple pair
train = train.astype(str)
# 尝试不将左右表key手动调整相同而是只看gold属性是否为1
# 故将左右表key直接去除
data = train.drop(columns=['_id', 'ltable_' + ltable_id, 'rtable_' + rtable_id], inplace=False)
# data中现存属性除key以外左右表属性和gold, 不含_id
columns = data.columns.values.tolist()
# 列表, 每个元素为二元组, 包含对应列的索引
col_tuple_list = build_col_tuple_list(columns)
length = data.shape[0]
width = data.shape[1]
# 嵌入data每一个cell, 纵向遍历
# note 此处已重设索引
data = data.reset_index(drop=True)
sentences = data.values.flatten(order='F').tolist()
embedding = model.encode(sentences, convert_to_tensor=True, device="cuda", batch_size=256, show_progress_bar=True)
split_embedding = torch.split(embedding, length, dim=0)
table_tensor = torch.stack(split_embedding, dim=0, out=None)
norm_table_tensor = torch.nn.functional.normalize(table_tensor, dim=2)
# sim_tensor_dict = {}
sim_tensor_list = []
for col_tuple in col_tuple_list:
mask = ((data[columns[col_tuple[0]]].isin([''])) | (data[columns[col_tuple[1]]].isin([''])))
empty_string_indices = data[mask].index.tolist()
lattr_tensor = norm_table_tensor[col_tuple[0]]
rattr_tensor = norm_table_tensor[col_tuple[1]]
mul_tensor = lattr_tensor * rattr_tensor
sim_tensor = torch.sum(mul_tensor, 1)
# 将有空字符串的位置强制置为-1.0000
sim_tensor = sim_tensor.scatter(0, torch.tensor(empty_string_indices, device='cuda').long(), -1.0000)
sim_tensor = torch.round(sim_tensor, decimals=2)
sim_tensor_list.append(sim_tensor.unsqueeze(1))
# sim_tensor_dict[columns[col_tuple[0]].replace('ltable_', '')] = sim_tensor
sim_table_tensor = torch.cat(sim_tensor_list, dim=1)
# 创建一个1列的tensor长度与相似度张量相同先初始化为全0
label_tensor = torch.zeros((sim_table_tensor.size(0), 1), device='cuda')
# 生成带标签的相似度张量
sim_table_tensor_labeled = torch.cat((sim_table_tensor, label_tensor), 1)
# 找到匹配元组对的行索引
mask = (data['gold'].isin(['1']))
match_pair_indices = data[mask].index.tolist()
# 根据索引将匹配的行标签置为1
sim_table_tensor_labeled[match_pair_indices, -1] = 1.00
md_list = init_md_list(len(col_tuple_list))
result_md_list = []
sorted_unique_value_tensor_list = []
for _ in range(len(col_tuple_list)):
# 将sim_table_tensor每一列的值从小到大排列加入列表
sorted_unique_value_tensor = torch.sort(sim_table_tensor[:, _].unique()).values
# 将每一列可能的相似度取值中小于0的都删掉
sorted_unique_value_tensor = sorted_unique_value_tensor[sorted_unique_value_tensor >= 0]
sorted_unique_value_tensor_list.append(sorted_unique_value_tensor)
result_list = []
# 遍历MD列表, 将满足的直接加入结果列表, 不满足的看能否收紧, 不能收紧直接跳过
# 若能收紧则将收紧后的一个个加入暂存列表, 并在该轮遍历结束后替换MD列表, 直到MD列表为空
while len(md_list) > 0:
tmp_list = []
for md_tensor in tqdm(md_list):
md_tensor_labeled = torch.cat((md_tensor, torch.tensor([0.5], device='cuda')), 0)
abs_support, confidence = get_metrics(md_tensor_labeled, sim_table_tensor_labeled)
# 如果support小于1, 没必要收紧阈值, 跳过
if abs_support >= 1:
# 如果support满足但confidence不满足, 需要收紧阈值
if confidence < confidence_threshold:
for _ in range(len(md_tensor)):
new_md_tensor = md_tensor.clone()
if new_md_tensor[_] == -1.00:
new_md_tensor[_] = sorted_unique_value_tensor_list[_][0]
if len(tmp_list) == 0:
tmp_list.append(new_md_tensor)
else:
stacked_tmp_tensors = torch.stack(tmp_list)
is_contained = (stacked_tmp_tensors == new_md_tensor) .all(dim=1).any()
if not is_contained:
tmp_list.append(new_md_tensor)
else:
a_tensor = sorted_unique_value_tensor_list[_]
b_value = new_md_tensor[_]
next_index = torch.where(a_tensor == b_value)[0].item() + 1
if next_index < len(a_tensor):
new_md_tensor[_] = a_tensor[next_index]
tmp_list.append(new_md_tensor)
# torch.where(sorted_unique_value_tensor_list[2] == 0.16)[0].item()
# 如果都满足, 直接加进结果列表
else:
result_list.append(md_tensor)
md_list = tmp_list
print(1)
# sim_tensor = torch.matmul(norm_table_tensor, norm_table_tensor.transpose(1, 2))
# sim_tensor = sim_tensor.float()
# sim_tensor = torch.round(sim_tensor, decimals=4)
def build_col_tuple_list(columns_):
col_tuple_list_ = []
for _ in columns_:
if _.startswith('ltable'):
left_index = columns_.index(_)
right_index = columns_.index(_.replace('ltable_', 'rtable_'))
col_tuple_list_.append((left_index, right_index))
return col_tuple_list_
def init_md_list(md_dimension: int):
md_list_ = []
# 创建全为-1的初始MD, 保留两位小数
init_md_tensor = torch.full((md_dimension, ), -1.0, device='cuda')
init_md_tensor = torch.round(init_md_tensor, decimals=2)
md_list_.append(init_md_tensor)
return md_list_
def get_metrics(md_tensor_labeled_, sim_table_tensor_labeled_):
table_tensor_length = sim_table_tensor_labeled_.size()[0]
# MD原本为列向量, 转置为行向量
md_tensor_labeled_2d = md_tensor_labeled_.unsqueeze(1).transpose(0, 1)
# 沿行扩展1倍(不扩展), 沿列扩展至与相似度表同样长
md_tensor_labeled_2d = md_tensor_labeled_2d.repeat(table_tensor_length, 1)
# 去掉标签列, 判断每一行相似度是否大于等于MD要求, 该张量行数与sim_table_tensor_labeled_相同, 少一列标签列
support_tensor = torch.ge(sim_table_tensor_labeled_[:, :-1], md_tensor_labeled_2d[:, :-1])
# 沿行方向判断support_tensor每一行是否都为True, 行数不变, 压缩为1列
support_tensor = torch.all(support_tensor, dim=1, keepdim=True)
# 统计这个tensor中True的个数, 即为absolute support
abs_support_ = torch.sum(support_tensor).item()
# 保留标签列, 判断每一行相似度是否大于等于MD要求
support_tensor = torch.ge(sim_table_tensor_labeled_, md_tensor_labeled_2d)
# 统计既满足相似度要求也匹配的, abs_strict_support表示左右都满足的个数
support_tensor = torch.all(support_tensor, dim=1, keepdim=True)
abs_strict_support_ = torch.sum(support_tensor).item()
# 计算confidence
confidence_ = abs_strict_support_ / abs_support_ if abs_support_ > 0 else 0
return abs_support_, confidence_

@ -0,0 +1,75 @@
import time
import pandas as pd
import py_entitymatching as em
import py_entitymatching.catalog.catalog_manager as cm
from tqdm import tqdm
from md_discovery.md_mining import mining
from settings import *
def blocking_mining():
start = time.time()
ltable = pd.read_csv(ltable_path, encoding='ISO-8859-1')
cm.set_key(ltable, ltable_id)
rtable = pd.read_csv(rtable_path, encoding='ISO-8859-1')
cm.set_key(rtable, rtable_id)
mappings = pd.read_csv(mapping_path, encoding='ISO-8859-1')
matching_number = len(mappings)
if ltable_id == rtable_id:
tables_id = rtable_id
attributes = ltable.columns.values.tolist()
lattributes = ['ltable_' + i for i in attributes]
rattributes = ['rtable_' + i for i in attributes]
cm.set_key(ltable, ltable_id)
cm.set_key(rtable, rtable_id)
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(ltable, rtable, ltable_block_attr, rtable_block_attr, allow_missing=True,
l_output_attrs=attributes, r_output_attrs=attributes, n_jobs=1,
overlap_size=1, show_progress=False)
candidate['gold'] = 0
candidate = candidate.reset_index(drop=True)
# 根据mapping表标注数据
candidate_match_rows = []
for t in tqdm(mappings.itertuples()):
mask = ((candidate['ltable_' + ltable_id].isin([getattr(t, 'ltable_id')])) &
(candidate['rtable_' + rtable_id].isin([getattr(t, 'rtable_id')])))
matching_indices = candidate[mask].index
candidate_match_rows.extend(matching_indices.tolist())
match_rows_mask = candidate.index.isin(candidate_match_rows)
candidate.loc[match_rows_mask, 'gold'] = 1
candidate.fillna(value="", inplace=True)
candidate_mismatch = candidate[candidate['gold'] == 0]
candidate_match = candidate[candidate['gold'] == 1]
candidate_mismatch = candidate_mismatch.sample(n=3*len(candidate_match))
candidate_for_train_test = pd.concat([candidate_mismatch, candidate_match])
# 如果拼接后不重设索引可能导致索引重复
candidate_for_train_test = candidate_for_train_test.reset_index(drop=True)
cm.set_key(candidate_for_train_test, '_id')
cm.set_fk_ltable(candidate_for_train_test, 'ltable_' + ltable_id)
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + rtable_id)
cm.set_ltable(candidate_for_train_test, ltable)
cm.set_rtable(candidate_for_train_test, rtable)
block_recall = len(candidate_match) / matching_number
# 分为训练测试集
train_proportion = 0.5
sets = em.split_train_test(candidate_for_train_test, train_proportion=train_proportion, random_state=0)
train_set = sets['train']
test_set = sets['test']
end_blocking = time.time()
print(end_blocking - start)
mining(train_set)
return 1
def matching():
return 1
if __name__ == '__main__':
blocking_mining()

@ -170,8 +170,6 @@ def er_process(config: Configuration):
rid_mapping_list.append(row[mapping_rid])
selected_ltable = ltable[ltable[ltable_id].isin(lid_mapping_list)]
# if len(lr_attrs_map) > 0:
# selected_ltable = selected_ltable.rename(columns=lr_attrs_map) # 参照右表,修改左表中与右表对应但不同名的字段
tables_id = rtable_id
selected_rtable = rtable[rtable[rtable_id].isin(rid_mapping_list)]
selected_attrs = selected_ltable.columns.values.tolist() # 两张表中的字段名
@ -180,17 +178,11 @@ def er_process(config: Configuration):
cm.set_key(selected_ltable, tables_id)
cm.set_key(selected_rtable, tables_id)
if config["ml_blocker"] == "over_lap":
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
overlap_size=1, show_progress=False)
elif config["ml_blocker"] == "attr_equiv":
blocker = em.AttrEquivalenceBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs)
blocker = em.OverlapBlocker()
candidate = blocker.block_tables(selected_ltable, selected_rtable, config["block_attr"],
config["block_attr"], allow_missing=True,
l_output_attrs=selected_attrs, r_output_attrs=selected_attrs,
overlap_size=1, show_progress=False)
candidate['gold'] = 0
candidate = candidate.reset_index(drop=True)
@ -228,6 +220,7 @@ def er_process(config: Configuration):
cm.set_fk_rtable(candidate_for_train_test, 'rtable_' + tables_id)
cm.set_ltable(candidate_for_train_test, selected_ltable)
cm.set_rtable(candidate_for_train_test, selected_rtable)
block_recall = len(candidate_match) / matching_number
# 分为训练测试集
train_proportion = 0.7
@ -295,6 +288,7 @@ def er_process(config: Configuration):
predictions_attrs.extend(attrs_with_r_prefix)
predictions_attrs.extend(['gold', 'predicted'])
predictions = predictions[predictions_attrs]
# 必须从训练集内挖MD
train_attrs = predictions_attrs[:]
train_attrs.remove('predicted')
train_set = train_set[train_attrs]

@ -1,20 +1,22 @@
from sentence_transformers import SentenceTransformer
ltable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\tableA.csv'
rtable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\tableB.csv'
mapping_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\matches.csv'
ltable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Fodors-Zagats\tableA.csv'
rtable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Fodors-Zagats\tableB.csv'
mapping_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Fodors-Zagats\matches.csv'
mapping_lid = 'ltable_id' # mapping表中左表id名
mapping_rid = 'rtable_id' # mapping表中右表id名
ltable_block_attr = 'name'
rtable_block_attr = 'name'
ltable_id = 'id' # 左表id字段名称
rtable_id = 'id' # 右表id字段名称
target_attr = 'id' # 进行md挖掘时的目标字段
# lr_attrs_map = {} # 如果两个表中存在对应字段名称不一样的情况,将名称加入列表便于调整一致
model = SentenceTransformer('E:\\Data\\Research\\Models\\roberta-large-nli-stsb-mean-tokens')
model = SentenceTransformer('E:\\Data\\Research\\Models\\all-MiniLM-L6-v2')
interpre_weight = 1 # 可解释性权重
similarity_threshold = 0.1
support_threshold = 1
confidence_threshold = 0.25
confidence_threshold = 0.6
er_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\ml_er\\output\\'
md_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\md_discovery\\output\\'

Loading…
Cancel
Save