From b7034820eb42e61ba1f1ef0e7eb0638d90402390 Mon Sep 17 00:00:00 2001 From: HuangJintao <1447537163@qq.com> Date: Tue, 15 Aug 2023 20:24:37 +0800 Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0md=E6=8C=96=E6=8E=98=E8=84=9A?= =?UTF-8?q?=E6=9C=AC?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- inference_from_record_pairs.py | 151 +++++++++++++++++++++++++++++++++ 1 file changed, 151 insertions(+) create mode 100644 inference_from_record_pairs.py diff --git a/inference_from_record_pairs.py b/inference_from_record_pairs.py new file mode 100644 index 0000000..a2bd590 --- /dev/null +++ b/inference_from_record_pairs.py @@ -0,0 +1,151 @@ +import numpy as np +import pandas as pd +import time +import Levenshtein +import copy + + +def my_Levenshtein_ratio(str1, str2): + return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2)) + + +def if_minimal(md, md_list, target_col): + # 假设这个md是minimal + minimal = True + for _ in md_list: + if _ != md: + # 假设列表中每一个md都使当前md不minimal + exist = True + # 如果左边任何一个大于,则假设不成立 + for col in list(set(_.keys()) - set([target_col])): + if _[col] > md[col]: + exist = False + # 如果右边小于,假设也不成立 + if _[target_col] < md[target_col]: + exist = False + # 任何一次假设成立,当前md不minimal + if exist: + minimal = False + break + return minimal + + +def satisfy_confidence(md, df, conf_thresh, target_col): + support = 0 + support_plus = 0 + for row1 in df.itertuples(): + i = row1[0] + df_slice = df[i + 1:] + for row2 in df_slice.itertuples(): + left_satisfy = True + both_satisfy = True + for col in df.columns.values.tolist(): + sim = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col)) + if col == target_col: + if sim < 1: + both_satisfy = False + else: + if sim < md[col]: + left_satisfy = False + both_satisfy = False + if left_satisfy: + support += 1 + if both_satisfy: + support_plus += 1 + confidence = support_plus / support + return confidence >= conf_thresh + + +def inference_from_record_pairs(path, threshold, target_col): + data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1') + data = data.astype(str) + columns = data.columns.values.tolist() + + md_list = [] + minimal_vio = [] + init_md = {} + for col in columns: + init_md[col] = 1 if col == target_col else 0 + md_list.append(init_md) + + for row1 in data.itertuples(): + # 获取当前行的索引,从后一行开始切片 + i = row1[0] + data1 = data[i + 1:] + for row2 in data1.itertuples(): + violated_mds = [] + # sims是两行的相似度 + sims = {} + for col in columns: + similarity = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col)) + sims[col] = similarity + + # 寻找violated md,从md列表中删除并加入vio列表 + for md in md_list: + lhs_satis = True + rhs_satis = True + for col in list(set(columns) - set([target_col])): + if sims[col] < md[col]: + lhs_satis = False + if sims[target_col] < md[target_col]: + rhs_satis = False + if lhs_satis == True and rhs_satis == False: + md_list.remove(md) + violated_mds.append(md) + minimal_vio.extend(violated_mds) + + for vio_md in violated_mds: + # 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值 + # if sims[target_col] >= threshold: + # new_rhs = sims[target_col] + # spec_r_md = copy.deepcopy(vio_md) + # spec_r_md[target_col] = new_rhs + # if if_minimal(spec_r_md, md_list, target_col): + # md_list.append(spec_r_md) + + # 特殊化左侧 + for col in list(set(columns) - set([target_col])): + if sims[col] + 0.001 <= 1: + spec_l_md = copy.deepcopy(vio_md) + spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.001 + if if_minimal(spec_l_md, md_list, target_col): + md_list.append(spec_l_md) + + for vio in minimal_vio: + if not if_minimal(vio, md_list, target_col): + minimal_vio.remove(vio) + + for _ in minimal_vio: + if not satisfy_confidence(_, data, 0.8, target_col): + minimal_vio.remove(_) + + list1 = copy.deepcopy(minimal_vio) + for _ in list1: + if not if_minimal(_, minimal_vio, target_col): + minimal_vio.remove(_) + + return md_list, minimal_vio + + +if __name__ == '__main__': + # 目前可以仿照这个main函数写 + path = "/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/output/8.14/TP_single_tuple.csv" + start = time.time() + # 输入:csv文件路径,md左侧相似度阈值,md右侧目标字段 + # 输出:2个md列表,列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8) + # 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段 + mds, mds_vio = inference_from_record_pairs(path, 0.7, 'id') + + # 将列表1写入本地,路径需自己修改 + md_path = '/home/w/A-New Folder/8.14/Goods Dataset/TP_md_list.txt' + with open(md_path, 'w') as f: + for _ in mds: + f.write(str(_)+'\n') + + # 将列表2写入本地,路径需自己修改 + vio_path = '/home/w/A-New Folder/8.14/Goods Dataset/TP_vio_list.txt' + with open(vio_path, 'w') as f: + for _ in mds_vio: + f.write(str(_)+'\n') + + print(time.time() - start)