from sentence_transformers import SentenceTransformer ltable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\tableA.csv' rtable_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\tableB.csv' mapping_path = r'E:\Data\Research\Projects\matching_dependency\datasets\Walmart-Amazon_dirty\matches.csv' mapping_lid = 'ltable_id' # mapping表中左表id名 mapping_rid = 'rtable_id' # mapping表中右表id名 ltable_id = 'id' # 左表id字段名称 rtable_id = 'id' # 右表id字段名称 target_attr = 'id' # 进行md挖掘时的目标字段 # lr_attrs_map = {} # 如果两个表中存在对应字段名称不一样的情况,将名称加入列表便于调整一致 model = SentenceTransformer('E:\\Data\\Research\\Models\\roberta-large-nli-stsb-mean-tokens') interpre_weight = 1 # 可解释性权重 similarity_threshold = 0.1 support_threshold = 1 confidence_threshold = 0.25 er_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\ml_er\\output\\' md_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\md_discovery\\output\\' hpo_output_dir = 'E:\\Data\\Research\\Projects\\matching_dependency\\hpo\\output\\'