import numpy as np import pandas as pd import time import Levenshtein import copy def my_Levenshtein_ratio(str1, str2): return 1 - Levenshtein.distance(str1, str2) / max(len(str1), len(str2)) def if_minimal(md, md_list, target_col): # 假设这个md是minimal minimal = True for _ in md_list: if _ != md: # 假设列表中每一个md都使当前md不minimal exist = True # 如果左边任何一个大于,则假设不成立 for col in list(set(_.keys()) - set([target_col])): if _[col] > md[col]: exist = False # 如果右边小于,假设也不成立 if _[target_col] < md[target_col]: exist = False # 任何一次假设成立,当前md不minimal if exist: minimal = False break return minimal def satisfy_confidence(md, df, conf_thresh, target_col): support = 0 support_plus = 0 for row1 in df.itertuples(): i = row1[0] df_slice = df[i + 1:] for row2 in df_slice.itertuples(): left_satisfy = True both_satisfy = True for col in df.columns.values.tolist(): sim = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col)) if col == target_col: if sim < 1: both_satisfy = False else: if sim < md[col]: left_satisfy = False both_satisfy = False if left_satisfy: support += 1 if both_satisfy: support_plus += 1 confidence = support_plus / support return confidence >= conf_thresh def inference_from_record_pairs(path, threshold, target_col): data = pd.read_csv(path, low_memory=False, encoding='ISO-8859-1') data = data.astype(str) columns = data.columns.values.tolist() md_list = [] minimal_vio = [] init_md = {} for col in columns: init_md[col] = 1 if col == target_col else 0 md_list.append(init_md) for row1 in data.itertuples(): # 获取当前行的索引,从后一行开始切片 i = row1[0] data1 = data[i + 1:] for row2 in data1.itertuples(): violated_mds = [] # sims是两行的相似度 sims = {} for col in columns: similarity = my_Levenshtein_ratio(getattr(row1, col), getattr(row2, col)) sims[col] = similarity # 寻找violated md,从md列表中删除并加入vio列表 for md in md_list: lhs_satis = True rhs_satis = True for col in list(set(columns) - set([target_col])): if sims[col] < md[col]: lhs_satis = False if sims[target_col] < md[target_col]: rhs_satis = False if lhs_satis == True and rhs_satis == False: md_list.remove(md) violated_mds.append(md) minimal_vio.extend(violated_mds) for vio_md in violated_mds: # 特殊化右侧,我们需要右侧百分百相似,其实不需要降低右侧阈值 # if sims[target_col] >= threshold: # new_rhs = sims[target_col] # spec_r_md = copy.deepcopy(vio_md) # spec_r_md[target_col] = new_rhs # if if_minimal(spec_r_md, md_list, target_col): # md_list.append(spec_r_md) # 特殊化左侧 for col in list(set(columns) - set([target_col])): if sims[col] + 0.001 <= 1: spec_l_md = copy.deepcopy(vio_md) spec_l_md[col] = threshold if sims[col] < threshold else sims[col] + 0.001 if if_minimal(spec_l_md, md_list, target_col): md_list.append(spec_l_md) for vio in minimal_vio: if not if_minimal(vio, md_list, target_col): minimal_vio.remove(vio) for _ in minimal_vio: if not satisfy_confidence(_, data, 0.8, target_col): minimal_vio.remove(_) list1 = copy.deepcopy(minimal_vio) for _ in list1: if not if_minimal(_, minimal_vio, target_col): minimal_vio.remove(_) return md_list, minimal_vio if __name__ == '__main__': # 目前可以仿照这个main函数写 path = "/home/w/PycharmProjects/py_entitymatching/py_entitymatching/datasets/end-to-end/Amazon-GoogleProducts/output/8.14/TP_single_tuple.csv" start = time.time() # 输入:csv文件路径,md左侧相似度阈值,md右侧目标字段 # 输出:2个md列表,列表1中md无violation,列表2中md有violation但confidence满足阈值(0.8) # 例如此处输入参数要求md左侧相似度字段至少为0.7,右侧指向'id'字段 mds, mds_vio = inference_from_record_pairs(path, 0.7, 'id') # 将列表1写入本地,路径需自己修改 md_path = '/home/w/A-New Folder/8.14/Goods Dataset/TP_md_list.txt' with open(md_path, 'w') as f: for _ in mds: f.write(str(_)+'\n') # 将列表2写入本地,路径需自己修改 vio_path = '/home/w/A-New Folder/8.14/Goods Dataset/TP_vio_list.txt' with open(vio_path, 'w') as f: for _ in mds_vio: f.write(str(_)+'\n') print(time.time() - start)