# 将数据点和MD一起聚类 import os import numpy as np import pandas as pd from matplotlib import pyplot as plt from draw_md_cluster import DBSCAN from ml_er.ml_entity_resolver import build_col_pairs_sim_tensor_dict def plot(md_keys_, md_data_, pre_match_points_, pre_mismatch_points_, labels_, output_path_): clusterNum = len(set(labels_)) fig = plt.figure() scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown'] ax = fig.add_subplot(111, projection='3d') for i in range(-1, clusterNum): colorStyle = scatterColors[i % len(scatterColors)] subCluster = md_data_[np.where(labels_ == i)] ax.scatter(subCluster[:, 0], subCluster[:, 1], subCluster[:, 2], c=colorStyle, s=12) ax.scatter(pre_match_points_[:, 0], pre_match_points_[:, 1], pre_match_points_[:, 2], c='#66CCFF', s=12, marker='x') if pre_mismatch_points_.shape[0] > 0: ax.scatter(pre_mismatch_points_[:, 0], pre_mismatch_points_[:, 1], pre_mismatch_points_[:, 2], c='#006666', s=12, marker='x') ax.set_xlabel(md_keys_[0], rotation=0) # 设置标签角度 ax.set_ylabel(md_keys_[1], rotation=-45) ax.set_zlabel(md_keys_[2], rotation=0) plt.title(output_path_.split('\\')[-1].split('.')[0]) plt.savefig(output_path_, dpi=500) plt.show() if __name__ == '__main__': outcome_path = r'E:\Data\Research\Outcome' config_dir = r'\Magellan+Smac+roberta-large-nli-stsb-mean-tokens+inter-0.5' dataset_name_list = [f.name for f in os.scandir(outcome_path) if f.is_dir()] for dataset_name in dataset_name_list: absolute_path = outcome_path + rf'\{dataset_name}' + config_dir + r'\mds.txt' # MD路径 predictions = outcome_path + rf'\{dataset_name}' + config_dir + r'\predictions.csv' # prediction路径 pred = pd.read_csv(predictions) pred = pred.astype(str) # pred = pred[pred['predicted'] == str(1)] sim_tensor_dict = build_col_pairs_sim_tensor_dict(pred) # 选取的三个字段 md_keys = [] with open(absolute_path, 'r') as f: # 读取每一行的md,加入该文件的md列表 md_data = [] for line in f.readlines(): md_metadata = line.strip().split('\t') md_tuple = eval(md_metadata[1]) md_keys = list(md_tuple[0].keys())[1:4] md_values = list(md_tuple[0].values()) md_data.append(md_values[1:4]) if len(md_data) == 10000: break pre_match_points = [] pre_mismatch_points = [] for _ in pred.itertuples(): data_point_value = [] for key in md_keys: sim_tensor = sim_tensor_dict[key] data_point_value.append(round(float(sim_tensor[_[0]]), 4)) if getattr(_, 'predicted') == str(1): pre_match_points.append(data_point_value) elif getattr(_, 'predicted') == str(0): pre_mismatch_points.append(data_point_value) md_data = np.array(md_data, dtype=np.float32) pre_match_points = np.array(pre_match_points, dtype=np.float32) pre_mismatch_points = np.array(pre_mismatch_points, dtype=np.float32) labels = DBSCAN(md_data, 0.5, 30) output_path = outcome_path + rf'\{dataset_name}_MD&data.png' plot(md_keys, md_data, pre_match_points, pre_mismatch_points, labels, output_path)