You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
matching_dependency/hpo/magellan_hpo.py

118 lines
5.3 KiB

import json
import pickle
import time
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Integer, Float
from ConfigSpace.conditions import InCondition, EqualsCondition, AndConjunction
from ConfigSpace.read_and_write import json as csj
import py_entitymatching.catalog.catalog_manager as cm
import pandas as pd
from colorama import Fore, init
from smac import HyperparameterOptimizationFacade, Scenario, BlackBoxFacade
from ml_er.magellan_er import matching
from settings import *
class Optimization:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
ml_matcher = Categorical("ml_matcher", ["dt", "svm", "rf"])
# note 以tree开头的超参数是DT和RF共用的
tree_criterion = Categorical("tree_criterion", ["gini", "entropy", "log_loss"], default="gini")
rf_n_estimators = Integer('number_of_tree', (10, 150))
tree_max_depth = Integer('tree_max_depth', (15, 30), default=None)
rf_max_features = Categorical('rf_max_features', ["sqrt", "log2", "auto"], default='sqrt')
svm_kernel = Categorical('svm_kernel', ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'], default='rbf')
svm_C = Integer('svm_C', (1, 100), default=1)
svm_gamma = Categorical('svm_gamma', ['scale', 'auto'], default='scale')
svm_degree = Integer('svm_degree', (1, 3), default=3)
svm_constant = Float('svm_constant', (0.0, 5.0), default=0.0)
dt_splitter = Categorical('dt_splitter', ["best", "random"], default='best')
dt_max_features = Categorical('dt_max_features', ["auto", "sqrt", "log2"], default=None)
cs.add_hyperparameters([ml_matcher, tree_criterion, rf_n_estimators, tree_max_depth, rf_max_features,
svm_kernel, svm_C, svm_gamma, svm_degree, svm_constant, dt_splitter, dt_max_features])
active_tree_criterion = InCondition(child=tree_criterion, parent=ml_matcher, values=['dt', 'rf'])
active_tree_max_depth = InCondition(child=tree_max_depth, parent=ml_matcher, values=['dt', 'rf'])
active_rf_n_estimators = EqualsCondition(child=rf_n_estimators, parent=ml_matcher, value="rf")
active_rf_max_features = EqualsCondition(child=rf_max_features, parent=ml_matcher, value="rf")
active_dt_splitter = EqualsCondition(child=dt_splitter, parent=ml_matcher, value="dt")
active_dt_max_features = EqualsCondition(child=dt_max_features, parent=ml_matcher, value="dt")
active_svm_kernel = EqualsCondition(child=svm_kernel, parent=ml_matcher, value="svm")
active_svm_C = EqualsCondition(child=svm_C, parent=ml_matcher, value="svm")
active_svm_gamma1 = EqualsCondition(child=svm_gamma, parent=ml_matcher, value="svm")
active_svm_degree1 = EqualsCondition(child=svm_degree, parent=ml_matcher, value="svm")
active_svm_constant1 = EqualsCondition(child=svm_constant, parent=ml_matcher, value="svm")
active_svm_gamma2 = InCondition(child=svm_gamma, parent=svm_kernel, values=["rbf", "poly", "sigmoid"])
active_svm_degree2 = EqualsCondition(child=svm_degree, parent=svm_kernel, value="poly")
active_svm_constant2 = InCondition(child=svm_constant, parent=svm_kernel, values=["poly", "sigmoid"])
cs.add_conditions([active_svm_C, active_svm_kernel, active_dt_splitter, active_rf_n_estimators,
active_dt_max_features, active_rf_max_features, active_tree_max_depth, active_tree_criterion,
AndConjunction(active_svm_gamma1, active_svm_gamma2),
AndConjunction(active_svm_degree1, active_svm_degree2),
AndConjunction(active_svm_constant1, active_svm_constant2)])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
cm.del_catalog()
indicators = matching(config)
return 1 - indicators['performance']
def ml_er_hpo():
optimization = Optimization()
cs = optimization.configspace
str_configspace = csj.write(cs)
dict_configspace = json.loads(str_configspace)
# 将超参数空间保存本地
with open(hpo_output_dir + r"\configspace.json", "w") as f:
json.dump(dict_configspace, f, indent=4)
scenario = Scenario(
cs,
crash_cost=1.0,
deterministic=True,
n_trials=16,
n_workers=1
)
initial_design = BlackBoxFacade.get_initial_design(scenario, n_configs=5)
smac = BlackBoxFacade(
scenario,
optimization.train,
initial_design=initial_design,
overwrite=True, # If the run exists, we overwrite it; alternatively, we can continue from last state
)
incumbent = smac.optimize()
incumbent_cost = smac.validate(incumbent)
default = cs.get_default_configuration()
default_cost = smac.validate(default)
print(Fore.BLUE + f"Default Cost: {default_cost}")
print(Fore.BLUE + f"Incumbent Cost: {incumbent_cost}")
if incumbent_cost > default_cost:
incumbent = default
print(Fore.RED + f'Updated Incumbent Cost: {default_cost}')
print(Fore.BLUE + f"Optimized Configuration:{incumbent.values()}")
with open(hpo_output_dir + r"\incumbent.json", "w") as f:
json.dump(dict(incumbent), f, indent=4)
return incumbent
if __name__ == '__main__':
init(autoreset=True)
print(Fore.CYAN + f'Start Time: {time.time()}')
ml_er_hpo()